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Solutions to Quiz 1 

Problem 1 (25 points). Consider the following system specifications1. 

1. The system is in multiuser state iff it is operating normally. 

2. If the system is operating normally, then the kernel is functioning. 

3. The kernel is not functioning or the system is in interrupt mode. 

4. If the system is not in multiuser state, then it is in interrupt mode. 

5. The system is not in interrupt mode. 

(a) (0 points) To make sense of these confusing conditions, let’s introduce four Boolean 
variables. 

M ::= in Multiuser state (1) 
N ::= operating Normally (2) 
K ::= Kernel is functioning (3) 
I ::= in Interrupt mode (4) 

Translate the five statements in the specification into propositional logic notation: ∧ , ∨ , ¬ , −→ 
, ←→ 

Solution. 

M N (5)←→ 

N −→ K (6) 
¬ K ∨ I (7) 
¬ M −→ I (8) 

¬ I (9) 

c

1Rosen, Exercise 1.1.35
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(b) (0 points) Are these system specifications consistent? . Prove it! 

Solution. There are several ways to approach this problem. One is to construct a truth 
table with sixteen lines—one for each way of assigning truth values to the four variables 
M , N , K, and I . 

We can avoid the cumbersome truthtable if we reason by cases. Case 1: I is true. Then 
the last formula (9) is false, and the whole specification is false. Case 2: I is false. Now 
formula (8) can be true only if ¬ M is false, that is, only if M is true. Likewise, formula (7) 
can be true only if ¬ K is true, that is, K is false. 

Since K is false, formula (6) can be true only if N is false. Thus, we have deduced that in 
order to be consistent in this case, we must have 

I = false 

M = true 

K = false 

N = false. 

But now formula (5) is false, so it is impossible for all the formulas to be true: the system 
is inconsistent. � 

Problem 2 (20 points). For each of the following logical formulas with domain of dis­
course the natural numbers, N, indicate whether it is a possible formulation of 

I: the Induction Axiom, 

S: the Strong Induction Axiom, 

L: the Least Number Principle (also known as Well­ordering), or 

N: None of these. 

For example, the ordinary Induction Axiom could be expressed by the following formula, 
so it gets labelled “I”. 

(P (0) ∧ [∀ k P (k) −→ P (k + 1)]) −→ ∀ k P (k) I 

This is a multiple choice problem: do not explain your answer. 

(a) (0 points) (P (b) ∧ [∀ k ≥ b P (k) −→ P (k + 1)]) −→ ∀ k ≥ b P (k) 
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Solution. I. This is a perfect formulation of the Induction Axiom. b is used for the base 
case; P (k) −→ P (k + 1) is the inductive case. � 

(b) (0 points) (P (b) ∧ [∀ k ≤ b P (k) −→ P (k + 1)]) −→ ∀ k ≤ b P (k) 

Solution. N. The two occurences of k <= b should have been k >= b � 

(c) (0 points) [∀ b (∀ k < b P (k)) −→ P (b)] −→ ∀ k P (k) 

Solution. S. Since you are assuming P (k) for all k < b, this is strong induction. � 

(d) (0 points) (∃ n P (n)) −→ ∃ n ∀ k < n P (k) 

Solution. N. This statement is in fact always true; when n = 0, ∀ k < n P (k). It should say 
P (n) ∧ ∀ k < n; P (k) � 

(e) (0 points) ∀ n [P (n) −→ (∃ n P (n) ∧ ∀ k < n P (k))] 

Solution. L. This is a valid formulation; it does not have that problem in (2d). � 

Problem 3 (20 points). Classify each of the following binary relations as 

E: An equivalence relation. 

T: A Total order, 

P: A Partial order that is not total. 

S: A Symmetric relation that is not transitive. 

N: None of the above. 

This is a multiple choice problem: do not explain your answer. 

(a) (0 points) The relation xRy between times of day such that x and y are at most 
twenty minutes apart. 
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Solution. S: This relation is reflexive and symmetric. It is not transitive; Consider the 
counter­example: 1:00R 1:15, 1:15R 1:22 but ¬1:00R 1:22. � 

(b) (0 points) The relation xRy between times of day such that x is more than twenty 
minutes later than y. 

Solution. P: This relation is antisymmetric and transitive but not reflexive (since a time 
isn’t 20 minutes after itself). This is not a total ordering because some times are incompa­
rable to each other. For example, 1:15 is incomparable to 1:22. 

Note: This answer assumes that the question was referring to the moments in time in 
a single day. Otherwise, one could argue that 1:00 precedes 1:22 on tuesday, but 1:22 on 
tuesday precedes 1:00 on wednesday, and then the relation would not be antisymmetric.� 

(c) (0 points) The relation xRy over all words in this sentence such that x does not 
appear after y. (Consider “x”, “y”, and “xRy” to be words.) 

Solution. T: Because all the words in the sentence are unique, this relation is transitive, 
antisymmetric, and reflexive. This makes the relation a partial order. However, the rela­
tion is also a total order, because any two elements are comparable. � 

(d) (0 points) The relation xRy over all words in this sentence such that word x does 
not appear after word y. 

Solution. P: This is the same as saying that all appearances of a word x occur before 
all appearances of a word y. While apparently very similar to part c, this relation is 
not reflexive because the word word appears twice in the sentence. It is transitive and 
antisymmetric, but not a total order because all the words between the two occurrences 
of word are incomparable to word. � 

(e) (0 points) The relation xRy over all words in this sentence such that the final ap­
pearance of y occurs after x. 

Solution. N: This relation is not reflexive and transitive. It is neither symmetric nor an­
tisymmetric; the word the occurs twice, all the others once. All words w, between the 
two occurrences of the satisfy wR the and theRw. So R is not anti­symmetric. But “x” is 
maximal, so it’s not symmetric either. � 
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Problem 4 (35 points). To encourage collaborative study, the 6.042 staff is considering 
assigning each student to a study group with two or three other students. Prove that as 
long as the enrollment is large enough, the class can always be divided into such study 
groups. 

Solution. Proof. The proof is by strong induction. The induction hypothesis is that a class 
with n ≥ 6 students can be divided into teams of 3 or 4. More precisely 

P (n) ::= n ≥ 6 −→ ∃ x, y ∈ N 3x + 4y = n. 

For any n ≥ 0, we may assume P (6), . . . , P (n− 1) to prove P (n). 

Case 1: (n < 6). P (n) holds because the hypothesis n ≥ 6 is false. 

Case 2: (n = 6, 7, or 8) P (6) is true because there could be two teams of 3, P (7) is true 
because there could be a team of 3 and a team of 4, and P (8) is true because there could 
be two teams of 4. 

Case 3: (n ≥ 9). Of course n > n− 3 so P (n− 3) holds by the strong induction hypothesis. 
But n − 3 ≥ 6, so P (n − 3) implies 3x� + 4y� = n − 3 for some x�, y� ∈ N, and therefore 
3x + 4y = n where x ::= x� + 1 and y ::= y�. So P (n) holds, as required. 
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