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Solutions to the Final Examination 

Problem 1 (15 points). Induction 

Suppose S(n) is a predicate on natural numbers, n, and suppose 

∀ k ∈ N S(k) −→ S(k + 2). (1) 

If (1) holds, some of the assertions below must always (A) hold, some can (C) hold but 
not always, and some can never (N) hold. Indicate which case applies for each of the 
assertions by circling the correct letter. 

(a) (3 points) A N C (∀ n ≤ 100 S(n)) ∧ (∀ n > 100 ¬ S(n)) 

Solution. N. In this case, S is true for n up to 100 and false from 101 on. So S(99) is true, 
but S(101) is false. That means that S(k) �−→ S(k + 2) for k = 99. This case is impossible. 

(b) (3 points) A N C S(1) −→ ∀ n S(2n + 1) 

Solution. A. This assertion says that if S(1) holds, then S(n) holds for all odd n. This case 
is always true. � 

(c) (3 points) A N C [∃ n S(2n)] −→ ∀ n S(2n + 2) 

Solution. C. If S(n) is always true, this assertion holds. So 

this case is possible. If S(n) is true only for even n greater than 4, (1) holds, but this 
assertion is false. So this case does not always hold. � 

(d) (3 points) A N C ∃ n ∃ m > n [S(2n )]) ∧ ¬ S(2m
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Solution. N. This assertion says that S holds for some even number ,2n, but not for some 
other larger even number, 2m. However, if S(2n) holds, we can apply (1) n − m times to 
conclude S(2m) also holds. This case is impossible. � 

(e) (3 points) A N C [∃ n S(n)] −→ ∀ n ∃ m > n S(m) 

Solution. A. This assertion says that if S holds for some n, then for every number, there 
is a larger number, m, for which S also holds. Since (1) implies that if there is one n for 
which S(n) holds, there are an infinite, increasing chain of k’s for which S(k) holds, this 
case is always true. � 

Problem 2 (20 points). State Machines 

We will describe a process that operates on sequences of numbers. The process will start 
with a sequence that is some permutation of the length 6n sequence 

(1, 2, . . . , n, 1, 2, . . . , 2n, 1, 2, . . . , 3n). 

(a) (5 points) Write a simple formula for the number of possible starting sequences. 

Solution. Using the Bookkeeper rule: There are 6n occurrences of digits, where each digit 
from 1 to n appears 3 times, and each digit from n + 1 to 2n appears twice, and each digit 
from 2n + 1 to 3n appears once, so the number of possible starting sequences is 

(6n)! (6n)! 
= . 

(3!)n(2!)n 12n 

If (s1, . . . , sk) is a sequence of numbers, then the i and jth elements of the sequence are out 
of order if the number on the left is strictly larger the number on the right, that is, if i < j 
and si > sj . Otherwise, the ith and jth elements are in order. Define p(S)::= the number 
of “out­of­order” pairs of elements in a sequence, S. 

From the starting sequence, we carry out the following process: 

(*) Pick two consecutive elements in the current sequence, say the ith and (i + 1)st. 

I. If the elements are not in order, then switch them in the sequence and repeat step 
(*). 



�

� � �

� � �

� � �
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II. If the elements are in order, remove both, resulting in a sequence that is shorter by

two. Then pick another element and remove it as well. If the length of the resulting

sequence is less than three, the process is over. Otherwise, reverse the sequence

and repeat step (*).


This process can be modelled as a state machine where the states are the sequences that 
appear at step (*). 

(b) (5 points) Describe a simple state invariant predicate that immediately implies that 
if this process halts, then the final state is the sequence of length zero. (Just define the 
invariant; you need not prove it has the requisite properties.) 

Solution. The predicate 3 | length (S) is an invariant of states, S, and is true of the start 
state, so is also true of the final state, so the length of the final state cannot be 1 or 2. � 

(c) (10 points) Prove that this process always terminates by defining a nonnegative inte­
ger valued derived variable that is strictly decreasing. (Just define the variable, you need 
not prove it has these properties.) 

2Solution. 6n · length (S) + p(S) as in the solution to Quiz 2, Problem 4. � 

Problem 3 (15 points). Equivalence Relations and Random Variables 

A random variable, X is said to match a random variable, Y , iff X and Y are on the same 
sample space and Pr {X = Y } = 0. Prove that “matches” is an equivalence relation. Hint: 
Note that Pr {X = Z} = Pr {[X = Z] [X = Y ]}+ Pr {[X = Z] [X = Y ]}.� � ∩ � � ∩

Solution. Since Pr {X = X} = 0, “matches” is reflexive. Also, since Pr {X = Y } = Pr {Y = X}, 
“matches” is symmetric.


To prove transitivity suppose X matches Y and Y matches Z.


Now we use the hint. (The hint itself follows from the fact that the event [X =� z] is the

disjoint union of the events [X = Z] ∩ [X = Y ] and [X = Z] ∩ [X = Y ].) Also,


[X = Z] [X = Y ] [X = Y ],� ∩ � ⊆ �

and 
[X = Z] [X = Y ] [Y = Z],� ∩ ⊆ �

so 
Pr {[X = Z]} ≤ Pr {[X = Y ]}+ Pr {[Y = Z]} . (2) 
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So if X matches Y and Y matches Z, then the righthand side of (2) is 0, and so X matches 
Z, which proves transivity. 

An alternative proof of transitivity (not using the hint), uses the fact that if X(s) =� Z(s) 
at some sample point, s, then either X(s) =� Y (s) or Y (s) = Z(s). But if X(s) = Y (s), then 
Pr {s} = 0, since X matches Y . Similarly, if Y (s) = Z(s), then Pr {s} = 0, since Y matches 
Z. So in any case, Pr {s} = 0. So Pr {X = Z} = Pr {s} = 0 = 0, that is, s∈[X=Z] s∈[X=Z] 

X matches Z. 
� � �

� 

Problem 4 (15 points). Planarity. 

(a) (8 points) Exhibit two planar drawings of the same 5­vertex graph in which a face in 
one drawing has more edges than any face in the other drawing. 

Solution. One drawing is a triangle with external triangles sitting on two of its edges; 
the four faces are of sizes 3,3,3,5. The other drawing is gotten flipping one of the external 
triangles to be internal; the four faces are now of sizes 3,3,4,4. � 

(b) (7 points) Prove that all planar drawings of the same graph have the same number 
of faces. 

Solution. We know that for any connected graph, f = e + v − 2 by Euler’s formula. Since 
e and v are uniquely determined by the graph, f must also be determined. 

For a general graph, we use the generalization of Euler’s formula: f + c = e+v − 1, where 
c is the number of connected components of the graph. An analogous argument works. 

No points were deducted for neglecting the general case. � 

Problem 5 (15 points). Inclusion­exclusion 

A certain company wants to have security for their computer systems. So they have given 
everyone a name and password. A length 10 word containing each of the characters: 

a, d, e, f, i, l, o, p, r, s, 
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is called a cword. A password will be a cword which does not contain any of the subwords 
”fails”, ”failed”, or ”drop”. 

Use the Inclusion­exclusion Principle to find a simple formula for the number of pass­
words. 

Solution. There are 7! cwords that contain “drop”, 6! that contain “fails”, and 5! that 
contain “failed”. There are 3! cwords containing both “drop” and “fails”. No cword can 
contain both “fails” and “failed”. The cwords containing both “drop” and “failed” come 
from taking the subword “failedrop” and the remaining letter “s” in any order, so there 
are 2! of them. So by Inclusion­exclusion, we have the number of cwords containing at 
least one of the three forbidden subwords is 

(7! + 6! + 5!) − (3! + 0 + 2!) + 0 = 5!(48) − 8. 

Among the 10! cwords, the remaining ones are passwords, so the number of passwords is 

10! − 5!(48) + 8 = 3, 623, 048. 

Problem 6 (15 points). Number Theory and Induction 

(a) (5 points) Seashells are used for currency on a remote island. However, there are 
only huge shells worth 210 dollars and gigantic shells worth 312 dollars. Suppose islander 
A owes m > 0 dollars to islander B. Explain why the debt can be repaid through an 
exchange of shells provided A and B both have enough of each kind. 

Solution. The greatest common divisor of 210 and 312 is 1, so there exist integers x and y 
such that: 

312 x 210 + y = 1· · 
Multiplying both sides by m gives: 

312 mx · 210 + my · = m 

Thus, islander A can repay the debt with mx huge shells and my gigantic shells. (A 
positive quantity indicates that A gives shells to B and a negative quantity indicates that 
B gives shells to A.) � 

(b) (10 points) Give an inductive proof that the Fibonacci numbers Fn and Fn+1 are rela­
tively prime for all n ≥ 0. The Fibonacci numbers are defined as follows: 

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (for n ≥ 2). 
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Solution. We use induction on n. Let P (n) be the proposition that Fn and Fn+1 are rela­
tively prime. 

Base case: P (0) is true because F0 = 0 and F1 = 1 are relatively prime. 

Inductive step: Assume that P (n) is true where n ≥ 0; that is, Fn and Fn+1 are relatively 
prime. We must show that Fn+1 and Fn+2 are relatively prime as well. If Fn+1 and Fn+2 had 
a common divisor d > 1, then d would also divide the linear combination Fn+2 − Fn+1 = 
Fn, contradicting the assumption that Fn and Fn+1 are relatively prime. So Fn+1 and Fn+2 

are relatively prime. 

The theorem follows by induction. � 

Problem 7 (20 points). Combinatorial Identities 

(a) (10 points) Give a combinatorial proof that 

n � �� n 
i = n2n−1 (3)

i 
i=1 

for all positive integers, n. 

Solution. Consider all the teams of one or more people along with a designated team­
leader from among a group of n people. There are n ways to pick the leader directly and 
2n−1 ways to pick the remaining members of the team, for a total of n2n−1 teams­with­
leader. 

Alternatively, we could pick a positive integer i ≤ n, then a team of i ≥ 1 people (there 
nare ways to do this), and then pick a leader of the team (there are i ways to do that). So 
i � � � n i nthe total number of ways to pick a team­with­leader in this way is . Since both i=1 i 

processes count the number of distinct teams­with­leader, the two counts are equal. 
nAnother way of doing this, as some students noted, is to recognize i as the total number � � � i 

n i nof 1’s in all n­bit strings with i 1’s in them. Then is the total number of 1’s in all i=1 i 

possible n­bit binary strings. On the other hand, since half of the bits in the 2n possible 
strings are 1’s, we can conclude that this total is simply n2n/2 = n2n−1 . � 

(b) (10 points) Now use the fact that the expected number of heads in n tosses of a fair 
coin is n/2 to give a different proof of equation (3). 
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Solution. 
n 

= E [# Heads in n fair flips]
2 

n

::= i Pr {i Head in n fair flips}
i=0 
n � � � �n� n 1 

= i 
i 2 

i=1 
n i n 
i=1 i = . 
2n 

Therefore 
n � � 

n2n−1 = 
n 

2n = 
� 

i
n 

. 
2 i 

i=1 

Problem 8 (20 points). Generating Functions 

Let an be the number of ways to fill a box with n doughnuts subject to the following 
constraints: 

• The number of glazed doughnuts must be odd. 

• The number of chocolate doughtnuts must be a multiple of 4. 

• The number of plain doughnuts is 0 or 2. 

• The number of sugar doughnuts is at most 1. 

(a) (8 points) Write a generating function for each of the four doughnut types: 

G(x) = x/(1 − x2) C(x) = 1(/1 − x4) 

P (x) = 1 + x2 S(x) = 1 + x 

(b) (12 points) Derive a closed formula for an. 
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Solution. We have 

x 
A(x) = 

(1 + x)(1 − x)2 

−1/4
+ 
−1/4 1/2 

= + 
1 + x 1 − x (1 − x)2 

by partial fractions. This gives 

n+1
(−1)n 1n 

an = − + 
4 

− 
4 

1 

2 

if n is even,
n 
2=


1 if n is odd. 
n 

= . 
2 

n 
2 

Problem 9 (15 points). Conditional Probability 

There are 3 children of different ages. What is the probability that at least two are boys, 
given that at least one of the two youngest children is a boy? 

Assume that each child is equally likely to be a boy or a girl and that their genders are 
mutually independent. A correct answer alone is sufficient. However, to be eligible for 
partial credit, you must include a clearly­labeled tree diagram. 

Solution. Let M be the event that there are at least two boys, and let Y be the event that 
at least one of the two youngest children is a boy. In the tree diagram below, all edge 
probabilities are 1/2. 

+

2 
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Problem 10 (15 points). Probability and Expectation 

A box initially contains n balls, all colored black. A ball is drawn from the box at random. 

•	 If the drawn ball is black, then a biased coin with probability, p > 0, of coming 
up heads is flipped. If the coin comes up heads, a white ball is put into the box; 
otherwise the black ball is returned to the box. 

•	 If the drawn ball is white, then it is returned to the box. 

This process is repeated until the box contains n white balls. 

Let D be the number of balls drawn until the process ends with the box full of white balls. 
Prove that E [D] = nHn/p, where Hn is the nth Harmonic number. 

Hint: Let Di be the number of draws after the ith white ball until the draw when the 
(i + 1)st white ball is put into the box. 
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Solution. Suppose that the box contains k white balls. The probability that a black ball is 
drawn and replaced by a white ball is p · (n − k)/n. Taking the placement of a white ball 
into the box as a “failure,” we know the mean time to failure is 1/(p(n−k)/n) = n/p(n−k). 
So E [Di], expected number of draws to introduce one more white ball is n/p(n − k). By 
linearity of expectation, the expected number of draws required to fill the box with white 
balls is: 

n−1

E [D] = Di 

k=0 

n−1� n 
= 

p(n − k)
k=0 

n−1� 1n 
= 

p 
· 

n − k 
k=0 
n

n 1 
= 

p 
· 

j 
(j = n − k) 

j=1 

nHn 
= . 

p 

Problem 11 (15 points). Deviation from the Mean 

I have a randomized algorithm for calculating 6.042 grades that seems to have very 
strange behavior. For example, if I run it more than once on the same data, it has dif­
ferent running times. However, one thing I know for sure is that its expected running time 
is 10 seconds. 

(a) (5 points) What does Markov’s bound tell us about the probablity that my algorithm 
takes longer than 1 minute (= 60 seconds)? 

Solution. the probability is < 1/6 � 

(b) (5 points) Suppose I decide to run the algorithm for 1 minute and if I don’t get an 
answer by that time, I stop what I am doing, and completely restart from scratch. Each 
time that I stop and restart the algorithm gives me an independent run of the algorithm. 
So, what is an upper bound on the probability that my algorithm takes longer than 5 
minutes to get an answer? 
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1
Solution. � 

65 

(c) (5 points) Suppose some 6.042 student tells me that they determined the variance of 
the running time of my algorithm, and it is 25. What is an upper bound on the probability 
that my algorithm takes longer than 1 minute? 

Solution. Use Chebyshev, to get 25/(50)2 = 1/100 � 

Problem 12 (20 points). Estimation and Confidence 

On December 20, 2005, the MIT fabrication facility produced a long run of silicon wafers. 
To estimate the fraction, d, of defective wafers in this run, we will take a sample of n 
independent random choices of wafers from the run, test them for defects, and estimate 
that d is approximately the same as the fraction of defective wafers in the sample. 

A calculation based on the Binomial Sampling Theorem (given below) will yield a near­
minimal number, n0, and such that with a sample of size n = n0, the estimated fraction 
will be within 0.006 of the actual fraction, d, with 97% confidence. 

Theorem (Binomial Sampling). Let K1, K2, . . . , be a sequence of mutually independent 0­1­
valued random variables with the same expectation, p, and let 

n

Sn ::= Ki. 
i=1 

Then, for 1/2 > � > 0, 

≥ �

1 + 2�
≤ 

2� 
·
 2−n(1−H((1/2)−�)) 

2π(1/4 − �2)n 
(4)


SnPr 
n 
− p


where 
H(α) ::= −α log2 α− (1 − α) log2(1 − α). 

(a) (10 points) Explain how to use the Binomial Sampling Theorem to find n0. You are 
not expected to calculate any actual values, but be sure to indicate which values should 
be plugged into what formulas. 

Solution. To find n0, let � = 0.006, and search for the smallest n such that the righthand 
side of (4) is ≤ 0.03. � 
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(b) (10 points) The calculations in part (a) depend on some facts about the run and how 
the n wafers in the sample are chosen. Write T or F next to each of the following state­
ments to indicate whether it is True or False. 

•	 T The probability that the ninth wafer in the sample is defective is d. 

Solution. The ninth wafer in the sample is equally likely to be any wafer in the run, 
so the probability it is defective is the same as the fraction, d, of defective wafers in 
the fabrication run. � 

•	 F The probability that the ninth wafer in the run is defective is d. 

Solution. The fabrication run was completed yesterday, so there’s nothing proba­
bilistic about the defectiveness of the ninth (or any other) wafer in the run: either it 
is or it isn’t defective, though we don’t know which. You could argue that this means 
it is defective with probability zero or one (we don’t know which), but in any case, it 
certainly isn’t d. � 

•	 T All wafers in the run are equally likely to be selected as the third wafer in the 
sample. 

Solution. The meaning of “random choices of wafers from the run” is precisely that 
at each of the n choices in the sample, in particular at the third choice, each wafer in 
the run is equally likely to be chosen. � 

•	 T The expectation of the indicator variable for the last wafer in the sample being 
defective is d. 

Solution. The expectation of the indicator variable is the same as the probability that 
it is 1, namely, it is the probability that the nth wafer chosen is defective, which we 
observed in the first part of this question is d. � 

•	 F Given that the first wafer in the sample is defective, the probability that the second 
wafer will also be defective is less than than d. 

Solution. The meaning of “independent random choices of wafers from the run” is 
precisely that at each of the n choices in the sample, in particular at the second choice, 
each wafer in the run is equally likely to be chosen, independent of what the first or 
any other choice happened to be. � 

•	 F Given that the last wafer in the run is defective, the probability that the next­to­last 
wafer in the run will also be defective is less than than d. 

Solution. As noted above, it’s zero or one.	 � 

•	 T It turns out that there are several different colors of wafer. Given that the first 
two wafers in the sample are the same color, the probability that the first wafer is 
defective may be < d. 

Solution. We don’t know how color correlates to defectiveness. It could be for exam­
ple, that most wafers in the run are white, and no white wafers are defective. Then 
given that two randomly chosen wafers in the sample are the same color, their most 
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likely color is white. This makes them less likely to be defective than usual, that is, 
the conditional probability that they will be defective would be less than d. � 

•	 T The probability that all the wafers in the sample will be different is nonzero. 

Solution. We can assume the length, r, of the fabrication run is larger than the sam­
ple, in which case the probability that all the wafers in the sample are different is 

r r − 1 r − 2 r − (n− 1) r! 
= > 0. 

nr
· 

r 
· 

r 
· · · 

r (r − n)!r

•	 T The probability that all choices of wafers in the sample will be different depends 
on the length of the run. 

Solution. The probability r!/(r − n)!rn depends on r.	 � 

−an)•	 F The probability that all choices of wafers in the sample will be different is Θ(e
for some constant a > 0. 

Solution. The probability is zero once the sample is larger than the run, and zero is 
−an).not Θ(e

Note that the Birthday Principle says that the probability that all choices of wafer are 
different is approximately 

−n(n−1) 
2r .e 

But this approximation only holds when n is not too close to r.1 But even assuming 
−anthis approximation held as n grew, the bound would not be of the form Θ(e ). � 

1It turns out that this approximation is actually pretty good as long as n = o(r2/3). 
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