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Solutions to Problem Set 9 

Problem 1. Professor Plum, Mr. Green, and Miss Scarlet are all plotting to shoot Colonel 
Mustard. If one of these three has both an opportunity and the revolver, then that person 
shoots Colonel Mustard. Otherwise, Colonel Mustard escapes. Exactly one of the three 
has an opportunity with the following probabilities: 

Pr {Plum has opportunity} = 1/6 

Pr {Green has opportunity} = 2/6 

Pr {Scarlet has opportunity} = 3/6 

Exactly one has the revolver with the following probabilities, regardless of who has an 
opportuntity: 

Pr {Plum has revolver} = 4/8 

Pr {Green has revolver} = 3/8 

Pr {Scarlet has revolver} = 1/8 

(a) Draw a tree diagram for this problem. Indicate edge and outcome probabilities. 

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld. 
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(b) What is the probability that Colonel Mustard is shot? 

Solution. Denote each outcome with a pair indicating who has the opportunity and who 
has the revolver. In this notation, the event that Colonel Mustard is shot consists of all 
outcomes where a single person has both: 

{(P, P ), (G, G), (S, S)} 

The probability of this event is the sum of the outcome probabilities: 

Pr {{(P, P ), (G, G), (S, S)}} = Pr {(P, P )} + Pr {(G, G)} + Pr {(S, S)} 

= 4/48 + 6/48 + 3/48 

= 13/48 

(c) What is the probability that Colonel Mustard is shot, given that Miss Scarlet does not 
have the revolver? 

Solution. Let S be the event that Colonel Mustard is shot, and let N be the event that 
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Miss Scarlet does not have the revolver. The solution is: 

Pr {S N} = 
Pr {S ∩ N}| 

Pr {N} 
Pr {(P, P ), (G, G)}

= 
Pr {(P, P ), (P, G), (G, P ), (G, G), (S, P ), (S, G)}

4 6+
48 48 = 4 3 8 6 12 9+ + + + +

48 48 48 48 48 48 

5 
= 

21 

(d) What is the probability that Mr. Green had an opportunity, given that Colonel Mus­
tard was shot? 

Solution. Let G be the event that Mr. Green has an opportunity, and again let S be the 
event that Colonel Mustard is shot. Then the solution is: 

Pr {G S} = 
Pr {G ∩ S}| 

Pr {S}
Pr {(G, G)}

= 
Pr {(P, P ), (G, G), (S, S)}

6 
48 = 4 6 3+ +

48 48 48 

6 
= 

13 

Problem 2. There are three prisoners in a maximum­security prison for fictional villains: 
the Evil Wizard Voldemort, the Dark Lord Sauron, and Little Bunny Foo­Foo. The parole 
board has declared that it will release two of the three, chosen uniformly at random, but 
has not yet released their names. Naturally, Sauron figures that he will be released to his 
home in Mordor, where the shadows lie, with probability 2/3. 

A guard offers to tell Sauron the name of one of the other prisoners who will be released 
(either Voldemort or Foo­Foo). However, Sauron declines this offer. He reasons that 
if the guard says, for example, “Little Bunny Foo­Foo will be released”, then his own 
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probability of release will drop to 1/2. This is because he will then know that either he or 
Voldemort will also be released, and these two events are equally likely. 

Using a tree diagram and the four­step method, either prove that the Dark Lord Sauron 
has reasoned correctly or prove that he is wrong. Assume that if the guard has a choice 
of naming either Voldemort or Foo­Foo (because both are to be released), then he names 
one of the two uniformly at random. 

Solution. Sauron has reasoned incorrectly. In order to understand his error, let’s begin by 
working out the sample space, noting events of interest, and computing outcome proba­
bilities: 
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Define the events S, F , and “F” as follows: 

“F” = Guard says Foo­Foo is released 

F = Foo­Foo is released 

S = Sauron is released 

The outcomes in each of these events are noted in the tree diagram. 

Sauron’s error is in failing to realize that the event F (Foo­foo will be released) is different 
from the event “F” (the guard says Foo­foo will be released). In particular, the probability 
that Sauron is released, given that Foo­foo is released, is indeed 1/2: 

Pr {S F} = 
Pr {S ∩ F}| 

Pr {F} 

3=
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But the probability that Sauron is released given that the guard merely says so is still 2/3: 

Pr {S “F” } = 
Pr {S ∩ “F” }| 

Pr { “F
1 

” } 

3 =
 1 1+

3 6 

2 
= 

3 

So Sauron’s probability of release is actually unchanged by the guard’s statement. � 

Problem 3. You shuffle a deck of cards and deal your friend a 5­card hand. 

(a) Suppose your friend says, “I have the ace of spades.” What is the probablity that she 
has another ace? 

Solution. The sample space for this experient is the set of all 5­card hands. All outcomes 
52are equally likely, so the probability of each outcome is 1/ . Let S be the event that

5 

your friend has the ace of spades, and let A be the event that your friend has another ace. 
Our objective is to compute: 

Pr {A S} = 
Pr {A ∩ S}| 

Pr {S} 

The number of hands containing the ace of spades is equal to the number of ways to select 
4 of the remaining 51 cards. Therefore: 

51 
4Pr {S} = �

52 
5 

The number of hands containing the ace of spades and at least one more ace is: 

3 48 3 48 3 48 
= + +A ∩ S 

1 3 2 2 3 1 

Here the first term counts the number of hands with one additional ace, since there are 
3
1 

48ways to choose the extra ace and ways to choose the other cards. Similarly, the 
3 

second term counts hands with two additional aces, and the last term counts hands with 
all three remaining aces. In probability terms, we have: 

3
2 

3
1 

48 48 3
3 

48+ + 
Pr {A ∩ S} = 52 

3 2 1 

5 
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Substituting these results into our original equation gives the solution: 
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(b) Suppose your friend says, “I have an ace.” What is the probability that she has an­
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other ace?


Solution. The sample space and outcome probabilities are the same as before. Let L be

the event that your friend has at least one ace, and M be the event that your friend has

more than one ace. Our goal it to compute:


Pr {M | L} = 
Pr {M ∩ L} 

= 
Pr {M}


Pr {L} Pr {L} 

The second equality holds because your friend surely at least one ace if she has more than

one; that is, M ⊆ L. The probability that your friend has at least one ace is:


48
 48 48 48+ + + 
Pr {L} =
 � �

52
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48
and ways to choose the remaining four cards. The remaining terms are similar. The 
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probability that your friend has more than one ace is:
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Plugging these results into the original equation gives:
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(c) Are your answers to (a) and (b) the same? Explain why. 

Solution. The answers are different. There are four aces, so there are sixteen different 
subsets of aces that your friend could have. 

•	 If your friend says, “I have the ace of spades”, then eight of these subsets are ruled 
out: those not containing the ace of spades. 
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•	 However, if your friend says, “I have an ace”, then only one subset is ruled out: the 
subset containing no aces. 

Thus, the probability that your friend has a second ace is different in these two cases, 
because we are conditioning on two very different events! � 

Problem 4. Finalphobia is a rare disease in which the victim has the delusion that he or 
she is being subjected to an intense mathematical examination. 

•	 A person selected uniformly at random has finalphobia with probability 1/100. 

•	 A person with finalphobia has shaky hands with probability 9/10. 

•	 A person without finalphobia has shaky hands with probability 1/20. 

What is the probablility that a person selected uniformly at random has finalphobia, given 
that he or she has shaky hands? 

Solution. Let F be the event that the randomly­selected person has finalphobia, and let 
S be the event that he or she has shaky hands. A tree diagram is worked out below: 
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The probability that a person has finalphobia, given that he or she has shaky hands is: 

Pr {F | S} = 
Pr {F ∩ S}

Pr {S}
9/1000 

= 
9/1000 + 99/2000 

18 
= 

18 + 99 
18 

= 
117 

So, while it’s true that someone with shaky hands is five times more likely to have fi­
nalphobia than someone with steady hands, it remains a poor bet –about 1 in 5 –that 
someone with shaky hands actually has does have finalphobia. � 

Problem 5. Outside of their hum­drum duties as 6.042 TAs, Sayan is trying to learn to 
levitate using only intense concentration and Jelani is launching a “Nelson 2008” presi­
dential campaign. Suppose that Sayan’s probability of levitating is 1/6, Jelani’s chance of 
becoming president is 1/4, and the success of one does not alter the other’s chances. 

(a) If at least one of them succeeds, what is the probability that Sayan learns to levitate? 

Solution. Let L be the event that Sayan learns to levitate, and let P be the event that Jelani 
becomes president. We can work out the desired probability as follows: 

Pr {L (L ∪ P )} = 
Pr {L ∩ (L ∪ P )}| 

Pr {L ∪ P}
Pr {L}

1 − Pr L ∩ P 

1/6 
= 

1 − (1 − 1/6)(1 − 1/4) 
4 

= 
9 

The first step uses the definition of conditional probability. In the second step, we rewrite 
both the top and bottom of the fraction using set identities. Then we substitute in the 
given probability and simplify. � 

(b) If at most one of them succeeds, what is the probability that Jelani becomes the pres­
ident of the United States? 
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Solution. Define events L and P as before. 

� 
P �� � 

L ∪ P 
�� Pr P ∩ L ∪ P 

Pr	 = � � 
Pr L ∪ P 

Pr P ∩ L 
= 

1	− Pr {L ∩ P}
(1/4) · (5/6) 

= 
1 − (1/6) · (1/4) 
5 

= 
23 

(c) If exactly one of them succeeds, what is the probability that it is Sayan? 

Solution. 

� 
L 

�� �� 
L ∩ P 

� � ��� Pr L ∩ P 
Pr	 = � �∪ L ∩ P 

Pr (L ∩ P ) ∪ (L ∩ P ) 

(1/6) · (3/4) 
= 

(1/6) · (3/4) + (5/6) · (1/4) 
3 

= 
8 

Problem 6. Suppose n balls are thrown randomly into n boxes, so each ball lands in each 
box with uniform probability. Also, suppose the outcome of each throw is independent 
of all the other throws. 

(a) Let Xi be an indicator random variable whose value is 1 if box i is empty and 0 
otherwise. Write a simple closed form expression for the probability distribution of Xi. 
Are X1, X2, . . . , Xn independent random variables? 

Solution. Box i is empty iff all n balls land in other boxes. The probability that a ball will 
land in another box in (n− 1)/n = 1− (1/n), and since the balls are thrown independently, 
we have � �

1 
n 

Pr {Xi = 1} = 1 − .	 (1) 
n 
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The Xi’s are not independent. For example, 

n

Pr {X1 = X2 = = Xn = 1} = 0 < Pr {Xi = 1} .· · · 
i=1 

(b) Show that 

� � � �k 
n 1

Pr {at least k balls fall in the first box} ≤ . 
k n 

Solution. Let S be a set of k of the n balls, and let ES be the event that each of these k 
balls falls in the first box. Since the probability that a ball lands in this box is 1/n, and the 
throws are independent, we have 

� �k
1

Pr {ES} = . (2) 
n 

The event that at least k balls land in the first box is the union of all the events ES . There 
nare subsets, S, of k balls, so by the Union Bound, 
k 

n
Pr {at least k balls fall in the first box} ≤ Pr {ES} . 

k 
·

Using the value for Pr {ES} from (??) in the preceding inequality yields the required 
bound. � 

(c) Let R be the maximum of the numbers of balls that land in each of the boxes. Con­
clude from the previous parts that 

n 
.Pr {R ≥ k} ≤ 

k! 

Solution. Note that R ≥ k exactly when some box has at least k balls. Since the bound 
on the probability of at least k balls in the first box applies just as well to any box, we can 
apply the Union Bound to having at least k balls in at least one of the n boxes: 

Pr {R ≥ k} ≤ n Pr {at least k balls fall in the first box} . 
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So from the previous problem part, we have � � � �k 
n 1

Pr {R ≥ k} ≤ n
k n 

n(n − 1) · · · (n − k + 1) 
= n 

k! nk 

= 
n 

k! 

n 

n 
· n − 1 

n 
· · · n − k + 1 

n 
n ≤ 
k! 

� 

(d) Conclude that 
lim Pr {R ≥ n = 0}

n→∞ 

for all � > 0. 

Solution. Using Stirling’s formula, and the upper bound from the previous part, we have 

k k+ln nn n n ne e
= = . 

k ln k 
Pr {R ≥ k} ≤ 

k! 
∼ √

2πk(k/e)k 
≤ 

(k/e)k kk e

Now let k = n . Then the exponent of e in the numerator above is n� + ln n, and the 
exponent of e in the denominator is n� ln n = �n� ln n. Since 

n � + ln n = o(n � ln n ), 

we conclude 
n�+ln ne

Pr {R ≥ n 0} ≤ 
e�n� ln n 

→ 

as n approaches ∞. � 

Problem 7. (An open­ended discussion question.) Consider a set, S, consisting of 77 
twenty­one digit numbers. We can use the pigeonhole principle to prove that two distinct 
subsets of the numbers in S have the same sum, but actually finding two such sets is 
can be difficult. Naively, we could sum the elements in all 277 subsets and find two that 
match, but this is a huge computational task. 

Recall the birthday principle: If there are d days in a year and 
√

2d people in a room, then 
the probability that two share a birthday is about 1 − 1/e = 0.632 . . .. 
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How could the birthday principle help you find two distinct subsets of S with the same 
sum using significantly fewer than 277 operations —say only a trillion operations? What 
assumptions must you make? 

Solution. Assume that the sums are uniformly distributed, mutually independent ran­
dom variables taking on values in the range [0, . . . , 77 1021]. Then we have a good chance · 
of finding two subsets with the same sum if the number of subsets we consider is about: 

√
2 77 · 1021 ≈ 4 1011 · · 

Of course, the sums are not uniformly distributed; in fact, the sum of a random subset is 
likely to be close to the expected value. This nonuniformity only improves the computa­
tional picture, however. (If almost everyone were born in July, then finding two people 
with the same birthday would be easier.) 

The sums are also not mutually independent. However, if we sum a few hundred billion 
selected at random, then the sets are likely to be different enough that their sums are 
“mostly kinda” independent. 

Overall, it seems that several billion sums should suffice to find two subsets with the 
same sum. � 
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