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Solutions to Problem Set 7 

Problem 1. There are 20 books arranged in a row on a shelf. 

(a) Describe a bijection between ways of choosing 6 of these books so that no two adja­
cent books are selected and 15­bit sequences with exactly 6 ones. 

Solution. There is a bijection from 15­bit sequences with exactly six 1’s to valid book 
selections: given such a sequence, map each zero to a non­chosen book, each of the first 
five 1’s to a chosen book followed by a non­chosen book, and the last 1 to a chosen book. 
For example, here is a configuration of books and the corresponding binary sequence: 

1����0����0����10����0����10����0����0����1� �� � � �� � � �� � � �� � � �� �10����

0����


1


Selected books are darkened. Notice that the first fives ones are mapped to a chosen 
book and an non­chosen book in order to ensure that the binary sequence maps to a valid 
selection of books. � 

(b) How many ways are there to select 6 books so that no two adjacent books are se­
lected? 

Solution. By the Bijection Rule, this is equal to the number of 15­bit sequences with ex­
actly 6 ones, which is equal to � � 

15! 15 
= 

6! 9! 6 

by the Bookkeeper Rule. � 
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2 Solutions to Problem Set 7 

Problem 2. Answer the following questions and provide brief justifications. Not every 
problem can be solved with a cute formula; you may have to fall back on case analysis, 
explicit enumeration, or ad hoc methods. 

You may leave factorials and binomial coefficients in your answers. 

(a) In how many different ways can the letters in the name of the popular 1980’s band 
BAN ANARAM A be arranged? 

Solution. There are 5 A’s, 2 N ’s, 1 B, 1 R, and 1 M . Therefore, the number of arrange­
ments is 

10!

5! 2! 1! 1! 1!


by the Bookkeeper Rule. � 

(b) How many different paths are there from point (0, 0, 0) to point (12, 24, 36) if every 
step increments one coordinate and leaves the other two unchanged? 

Solution. There is a bijection between the set of all such paths and the set of strings 
containing 12 X’s, 24 Y’s, and 36 Z’s. In particular, we obtain a path by working through a 
string from left to right. An X corresponds to a step that increments the first coordinate, 
a Y increments the second coordinate, and a Z increments the third. The number of such 
strings is: 

72! 

12! 24! 36! 

Therefore, this is also the number of paths. � 

(c) In how many different ways can 2n students be paired up? 

Solution. Pair up students by the following procedure. Line up the students and pair the 
first and second, the third and fourth, the fifth and sixth, etc. The students can be lined 
up in (2n)! ways. However, this overcounts by a factor of 2n, because we would get the 
same pairing if the first and second students were swapped, the third and fourth were 
swapped, etc. Furthermore, we are still overcounting by a factor of n!, because we would 
get the same pairing even if pairs of students were permuted, e.g. the first and second 
were swapped with the ninth and tenth. Therefore, the number of pairings is: 

(2n)! 

2n n!· 
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3 Solutions to Problem Set 7 

(d) How many different solutions over the natural numbers are there to the following 
equation? 

x1 + x2 + x3 + . . . + x8 = 100 

A solution is a specification of the value of each variable xi. Two solutions are different if 
different values are specified for some variable xi. 

Solution. There is a bijection between sequences containing 100 zeros and 7 ones. Specif­
ically, the 7 ones divide the zeros into 8 segments. Let xi be the number of zeros in the 
i­th segment. Therefore, the number of solutions is: 

100 + 7 

7 

(e) In how many different ways can one choose n out of 2n objects, given that n of the 
2n objects are identical and the other n are all unique? 

Solution. We can select n objects as follows. First, take a subset of the unique objects. 
Then take however many identical elements are needed to bring the total to n. The first 
step can be done in 2n ways, and the second can be done in only 1 way. Therefore, there 
are 2n ways to choose n objects. � 

(f) How many undirected graphs are there with vertices v1, v2, . . . , vn if self­loops are 
permitted? 

nSolution. There are + n potential edges, each of which may or may not appear in a 
2 

given graph. Therefore, the number of graphs is: 

2(n 
2)+n 

(g) There are 15 sidewalk squares in a row. Suppose that a ball can be thrown so that 
it bounces on 0, 1, 2, or 3 distinct sidewalk squares. Assume that the ball always moves 
from left to right. How many different throws are possible? As an example, a two­bounce 
throw is illustrated below. 

- - -
@ �� @ �� 

� � � � � �@R� � � � � �@R� � � � � � 
� � � � � � � � � � � � � � � � 
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4 Solutions to Problem Set 7 

Solution. � � � � � � � � 
15 15 15 15 

+ + + 
0 1 2 3 

(h) The working days in the next year can be numbered 1, 2, 3, . . . , 300. I’d like to avoid 
as many as possible. 

• On even­numbered days, I’ll say I’m sick. 

• On days that are a multiple of 3, I’ll say I was stuck in traffic. 

• On days that are a multiple of 5, I’ll refuse to come out from under the blankets. 

In total, how many work days will I avoid in the coming year? 

Solution. Let D2 be the set of even­numbered days, D3 be the days that are a multiple of 
3, and D5 be days that are a multiple of 5. The set of days I can avoid is D2 ∪ D3 ∪ D5. By 
the Inclusion­Exclusion Rule, the size of this set is: 

D2 ∪ D3 ∪ D5 = D2| + D3 + D5| | | | | | |

D2 ∩ D3 D2 ∩ D5 D3 ∩ D5
− | | − | | − | | 

+ D2 ∩ D3 ∩ D5| |
300 300 300 300 300 300 300 

=
2

+
3

+
5 

− 
2 3 

− 
2 5 

− 
3 5

+
2 3 5· · · · · 

= 220 

Problem 3. Use the pigeonhole principle to solve the following problems. 

(a) Prove that among any n2+1 points within an n×n square there must exist two points 
whose distance is at most 

√
2. 

Solution. Partition the n × n into n2 unit squares. Each of the n2 + 1 points lies in one 
of these n2 unit squares. (If a point lies on the boundary between squares, assign it to a 
square arbitrarily.) Therefore, by the pigeonhole principle, there exist two points in the 
same unit square. And the distance between those two points can be at most 

√
2. � 
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(b) Jellybeans of 6 different flavors are stored in 5 jars. There are 11 jellybeans of each 
flavor. Prove that some jar contains at least three jellybeans of one flavor and also at least 
three jellybeans of some other flavor. 

Solution. We use the pigeonhole principle twice. Since there are 11 beans of a given flavor 
and there are only 5 jars, some jar must get at least �11/5�= 3 beans of that flavor. Since 
there are 6 flavors and only 5 jars, some jar must get two pairs of same­flavored beans. � 

(c) Prove that among every set of 30 integers, there exist two whose difference or sum is 
a multiple of 51. 

Solution. Regard the 30 integers as pigeons. Regard the 26 sets {0}, {1, 50}, {2, 49}, . . ., 
{25, 26} as pigeonholes. Map integer n to the set containing n rem 51. By the pigeonhole 
principle, some two pigeons (integers a and b) are mapped to the same pigeonhole. Thus, 
either: 

• a rem 51 = b rem 51 and so the difference of a and b is a multiple of 51. 

• a rem 51 + b rem 51 is either 0 or 51 and so the sum of a and b is a multiple of 51. 

Problem 4. Suppose you have seven dice— each a different color of the rainbow; other­
wise the dice are standard, with six faces numbered 1 to 6. A roll is a sequence specifying 
a value for each die in rainbow (ROYGBIV) order. For example, one roll is (3, 1, 6, 1, 4, 5, 2) 
indicating that the red die showed a 3, the orange die showed 1, the yellow 6, the green 
1, the blue 4, the indigo 5, and the violet 2. 

For the problems below, describe a bijection between the specified set of rolls and another 
set that is easily counted using the Product, Generalized Product, and similar rules. Then 
write a simple numerical expression for the size of the set of rolls. You do not need to 
prove that the correspondence between sets you describe is a bijection, and you do not 
need to simplify the expression you come up with. 

For example, let A be the set of rolls where 4 dice come up showing the same number, 
and the other 3 dice also come up the same, but with a different number. Let R to be the 
set of seven rainbow colors and S be the set {1, . . . , 6} of dice values. 

Define B ::= S2 × {3, 4} × R3, where S2 is the set of size 2 subsets of S, and R3 is the set 
of size 3 subsets of R. Then define a bijection from A to B by mapping a roll in A to the 
sequence in B whose first element is the set of two numbers that came up, whose second 
element is the number of times the smaller of the two numbers came up in the roll, and 
whose third element is the set of colors of the three matching dice. 
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6 Solutions to Problem Set 7 

For example, the roll 
(4, 4, 2, 2, 4, 2, 4) ∈ A 

maps to the triple 
({2, 4} , 3, {yellow,green,indigo}) ∈ B. 

Now by the bijection Rule |A = B , and by the Product rule, | | |

6 7 
B| = 2 .|

2 
· · 

3 

(a) For how many rolls is the value on every die different? 

Solution. None, by the Pigeonhole Principle. � 

(b) For how many rolls do two dice have the value 6 and the remaining five dice all have 
different values? 

Example: (6, 2, 6, 1, 3, 4, 5) is a roll of this type, but (1, 1, 2, 6, 3, 4, 5) and (6, 6, 1, 2, 4, 3, 4) 
are not. 

Solution. As in the example, map a roll into an element of B ::= R2 × P5 where P5 is 
the set of permutations of {1, . . . , 5}. A roll maps to the pair whose first element is the 
set of colors of the two dice with value 6, and whose second element is the sequence 
of values of the remaining dice (in rainbow order). So (6, 2, 6, 1, 3, 4, 5) above maps to 
({red,yellow} , (2, 1, 3, 4, 5)). By the Product rule, 

7 
B| = 5!.|

2 
· 

(c) For how many rolls do two dice have the same value and the remaining five dice all 
have different values? 

Example: (4, 2, 4, 1, 3, 6, 5) is a roll of this type, but (1, 1, 2, 6, 1, 4, 5) and (6, 6, 1, 2, 4, 3, 4) 
are not. 

Solution. Map a roll into a triple whose first element is in S, indicating the value of the 
pair of matching dice, whose second element is set of colors of the two matching dice, and 
whose third element is the sequence of the remaining five dice values (in rainbow order). 

So (4, 2, 4, 1, 3, 6, 5) above maps to (4, {red,yellow} , (2, 1, 3, 6, 5)). Notice that the number 
of choices for the third element of a triple is the number of permutations of the remaining 
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7 Solutions to Problem Set 7 

five values, namely, 5!. This mapping is a bijection, so the number of such rolls equals the 
number of such triples. By the Generalized Product rule, the number of such triples is 

7 
6 5!.· 

2 
· 

Alternatively, we can define a map from this rolls in this part to the rolls in part (b), by 
replacing the value of the duplicated values with 6’s and replacing any 6 in the remaining 
values by the value of the duplicated pair. So the roll (4, 2, 4, 1, 3, 6, 5) would map to the 
role (6, 2, 6, 1, 3, 4, 5). Now a type b role, r, is mapped to by exactly the rolls obtainable 
from r by exchanging occurrences of 6’s and i’s, for i = 1, . . . , 6. So this map is 6­to­1, and 
by the Division Rule, the number of rolls here is 6 times the number of rolls in part (b). 

(d) For how many rolls do two dice have one value, two different dice have a second 
value, and the remaining three dice a third value? 

Example: (6, 1, 2, 1, 2, 6, 6) is a roll of this type, but (4, 4, 4, 4, 1, 3, 5) and (5, 5, 5, 6, 6, 1, 2) 
are not. 

Solution. Map a roll of this kind into a 4­tuple whose first element is the set of two num­
bers of the two pairs of matching dice, whose second element is the set of two colors 
of the pair of matching dice with the smaller number, whose third element is the set of 
two colors of the larger of the matching pairs, and whose fourth element is the value 
of the remaining three dice. For example, the roll (6, 1, 2, 1, 2, 6, 6) maps to the triple 
({1, 2} , {orange,green} , {yellow,blue} , 6). 

6
2

There are possible first elements of a triple, 7
2

second elements,
 5
2

third elements

since the second set of two colors must be different from the first two, and 4 ways to 
choose the value of the three dice since their value must differ from the values of the two 
pairs. So by the Generalized Product rule, there are 

6 7 5 
4 

2 
· 

2 
· 

2 
· 

possible rolls of this kind. � 

Problem 5. A derangement is a permutation (x1, x2, . . . , xn) of the set {1, 2, . . . , n} such that 
xi =� i for all i. For example, (2, 3, 4, 5, 1) is a derangement, but (2, 1, 3, 5, 4) is not because 
3 appears in the third position. The objective of this problem is to count derangements. 
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Solutions to Problem Set 7 8 

It turns out to be easier to start by counting the permutations that are not derangements. 
Let Si be the set of all permutations (x1, x2, . . . , xn) that are not derangements because 
xi = i. So the set of non­derangements is 

n

 
Si. 

i=1 

(a) What is |Si ?|

Solution. There is a bijection between permutations of {1, 2, . . . , n} with i in the i­th po­
sition and unrestricted permutations of {1, 2, . . . , n} − i. Therefore, Si = (n− 1)!. �| |

(b) What is Si ∩ Sj where i = j? 

Solution. The set Si ∩ Sj consists of all permutations with i in the i­th position and j in 
the j­th position. Thus, there is a bijection with permutations of {1, 2, . . . , n} − {i, j}, and 
so Si ∩ Sj = (n− 2)!. �| |

(c) What is |Si1 ∩ Si2 ∩ · · · ∩ Sik | where i1, i2, . . . , ik are all distinct? 

Solution. By the same argument, (n− k)!. � 

(d) Use the inclusion­exclusion formula to express the number of non­derangements in 
terms of sizes of possible intersections of the sets S1, . . . , Sn. 

Solution. 

Si ∩ Sj + Si ∩ Sj ∩ Sk n|Si| − | | | − · · · ± |S1 ∩ S2 ∩ · · · ∩ S |
i i,j 

|
i,j,k 

In each summation, the subscripts are distinct elements of {1, . . . , n}. � 

(e) How many terms in the expression in part (d) have the form |Si1 ∩ Si2 ∩ · · · ∩ Sik |? 

Solution. There is one such term for each k­element subset of the n­element set {1, 2, . . . , n}. 
nTherefore, there are 
k 

such terms. � 

(f) Combine your answers to the preceding parts to prove the number of non­derangements 
is: � � 

1 1 1 1 
n! . 

1! 
− 

2!
+ 

3! 
− · · · ± 

n! 
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9 Solutions to Problem Set 7 

Conclude that the number of derangements is 

1 1 1 1 
n! 1 − . 

1!
+ 

2! 
− 

3!
+ · · · ± 

n! 

Solution. By Inclusion­Exclusion, the number of non­derangements is 

Si ∩ Sj + Si ∩ Sj ∩ Sk|Si| − | | | − · · · ± |S1 ∩ S2 ∩ · · · ∩ Sn|
i i,j 

|
i,j,k 

n n n n 
= 

1 
· (n − 1)! − 

2 
· (n − 2)! + 

3 
· (n − 3)! − · · · ± 

n 
· 0! � � 

= n! 
1 

1! 
− 

1 

2! 
+ 

1 

3! 
− · · · ± 

1 

n! 
(1) 

Since there are n! permutation, the number of derangements is n! minus expression (1). � 

(g) As n goes to infinity, the number of derangements approaches a constant fraction of 
all permutations. What is that constant? Hint: 

2 3x xx e = 1 + x + + 
2! 3!

+ · · · 

Solution. 1/e � 
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