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Solutions to Problem Set 5


Problem 1. Suppose that one domino can cover exactly two squares on a chessboard, 
either vertically or horizontally. 

(a) Can you tile an 8 × 8 chessboard with 32 dominos? 

chess board

dominos

Solution. Yes. Place 4 vertical dominos in each column. � 

(b) Can you tile an 8 × 8 chessboard with 31 dominos if opposite corners are removed? 

Solution. No! Opposing corners are the same color. Therefore, removing opposite cor­
ners leaves an unequal number of white and black squares. Since every domino covers 
one black square and one white square, no tiling is possible. � 
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(c) Now suppose that an assortment of squares are removed from a chessboard. An 
example is shown below. 

Given a truncated chessboard, show how to construct a bipartite graph G that has a per­
fect matching if and only if the chessboard can be tiled with dominos. 

Solution. Create a vertex for every white square and a vertex for every black square. Put 
an edge between squares that share an edge. (This graph is bipartite, since the coloring of 
the squares defines a valid 2­coloring of the vertices.) 

If a perfect matching exists in this graph, then a tiling exists: put a domino over each pair 
of matched vertices. On the other hand, if a tiling exists, then a perfect matching exists: 
match squares covered by the same domino. � 

(d) Based on this construction and Hall’s theorem, can you state a necessary and suffi­
cient condition for a truncated chessboard to be tilable with dominos? Try not to mention 
graphs or matchings! 

Solution. A board can be tiled with dominos if and only if every set of white squares is 
adjacent to at least as many black squares and vice versa. � 

Problem 2. Prove that gcd(ka, kb) = k · gcd(a, b) for all k > 0. 

Solution. The smallest positive value of: 

(s a + t b)k · · · 

(which is equal to s(ka) + t(kb) = gcd(ka, kb)) must be k times the smallest positive value 
of: 

s a + t b· · 

(which is equal to gcd(a, b)). �
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Problem 3. Suppose that a ≡ b (mod n) and n > 0. Prove or disprove the following 
assertions: 

c(a) a ≡ bc (mod n) where c ≥ 0 

cSolution. The proof is by induction on c with the hypothesis that a ≡ bc (mod n). If 
c = 0, then the claim holds, because 1 ≡ 1 (mod n). Now suppose that: 

c bc (mod n)a ≡ 

Multiplying both sides by a gives: 

c+1 abc (mod n)a ≡ 

Since a ≡ b (mod n), we can replaced the a on the right side by b: 

c+1 a ≡ bc+1 (mod n) 

Therefore, the claim holds by induction. � 

(b) ca ≡ cb (mod n) where a, b, ≥ 0 

Solution. The claim is false. For example: 

20 (mod 3) (1)�≡ 23 

Problem 4. An inverse of k modulo n > 1 is an integer, k−1, such that 

k k−1 ≡ 1 (mod n).· 

Show that k has an inverse iff gcd(k, n) = 1. Hint: We saw how to prove the above when n is 
prime. 



� 

4 Solutions to Problem Set 5 

Solution. If gcd(k, n) = 1, then there exist integers x and y such that kx + yn = 1. There­
fore, yn = 1 − kx, which means n (1 − kx) and so kx ≡ 1 (mod n). Let k−1 be x. �| 

Problem 5. Here is a long run of composite numbers: 

114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 

Prove that there exist arbitrarily long runs of composite numbers. Consider numbers a 
little bigger than n! where n! = n · (n− 1) 3 2 1.· · · · ·

Solution. Let k be some natural number such that 1 < k ≤ n. We know k (n!+k) because|
k | n! and k k. Thus, the numbers n! + 2, n! + 3, n! + 4, . . . , n! + n must all be composite. |
This is a run of n− 1 consecutive composite numbers. Because we can arbitrarily choose 
n, we know arbitrarily long runs of compisite numbers exist. � 

Problem 6. Take a big number, such as 37273761261. Sum the digits, where every other 
one is negated: 

3 + (−7) + 2 + (−7) + 3 + (−7) + 6 + (−1) + 2 + (−6) + 1 = −11 

As it turns out, the original number is a multiple of 11 if and only if this sum is a multiple 
of 11. 

(a) Use a result from elsewhere on this problem set to show that 10k ≡ −1k (mod 11). 

Solution. We know 10 ≡ −1 (mod 11). From 2a, we conclude 10k ≡ (−1)k (mod 11). 

(b) Using this fact, explain why the procedure above works. 

Solution. A number in decimal has the form: 

dk · 10k + dk−1 10k−1 + . . . + d1 10 + d0· ·
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From the observation above, we know: 

dk · 10k + dk−1 10k−1 + . . . + d1 10 + d0· ·
dk · (−1)k + dk−1 · (−1)k−1 + . . . ·+d1 · (−1)1 + d0 · (−1)0 (mod 11) ≡ 

dk − dk−1 + . . . · −d1 + d0 (mod 11) ≡ 

Note that the above assumes k is even. The case where k is odd is analogous. Also, 
the procedure given in the problem may have us reverse all signs. Because we are only 
checking for divisibility, this does not matter. � 

Problem 7. Let Sk = 1k + 2k + . . . + (p − 1)k, where p is an odd prime and k is a positive 
multiple of p− 1. Use Fermat’s theorem to prove that Sk ≡ −1 (mod p). 

Solution. Fermat’s theorem says that xp−1 ≡ 1 (mod p) when 1 ≤ x ≤ p − 1. Since k is a 
multiple of p− 1, raising each side to a suitable power proves that xk ≡ 1 (mod p). Thus: 

1k + 2k + . . . + (p− 1)k ≡ 1 + 1 + . . . + 1 (mod p) 

p − 1 terms 

(mod p)≡ p− 1 

(mod p)≡ −1 
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