Solutions to Problem Set 1

Problem 1. A real number r is called *sensible* if there exist positive integers a and b such that $\sqrt{a/b} = r$. For example, setting a = 2 and b = 1 shows that $\sqrt{2}$ is sensible. Prove that $\sqrt[3]{2}$ is not sensible. (Consider only positive real roots in this problem)

Solution. The proof is by contradiction. Assume for the purpose of contradiction that $\sqrt[3]{2}$ is sensible. Then there exist positive integers a and b such that $\sqrt{a/b} = \sqrt[3]{2}$. Squaring both sides of this equation gives $a/b = \sqrt[3]{4}$, which implies that $\sqrt[3]{4}$ is rational.

Since $\sqrt[3]{4}$ is rational, we can write it as a fraction x/y in lowest-terms, where x is an integer and y is a positive integer. Therefore, we have:

$$\sqrt[3]{4} = x/y$$

$$4 = x^3/y^3$$

$$4y^3 = x^3$$

In the last equation, the left side is even, and so the right side must be even. Since x^3 is even, x itself must be even. This implies that the right side is actually divisible by 8, and so the left side must also be divisible by 8. Therefore, y^3 is even, and so y itself must be even.

The fact that both x and y are even contradicts the fact that x/y is a fraction in lowest terms. Therefore, $\sqrt[3]{2}$ is not sensible.

Problem 2. Translate the following sentence into a predicate formula:

There is a student who has e-mailed exactly two other people in the class, besides possibly herself.

The domain of discourse should be the set of students in the class; in addition, the only predicates that you may use are equality and E(x,y), meaning that "x has sent e-mail to y."

Solution. A good way to begin tackling this problem is by trying to translate parts of the sentance. Begin by trying to assert that student x has emailed students y and z:

$$E(x,y) \wedge E(x,z)$$
.

Now we want to say that *y* and *z* not the same student, and neither of them is *x* either:

$$x \neq y \land x \neq z \land y \neq z$$
,

where $x \neq y$ abbreviates $\neq (x = y)$.

Now, we must think of a way to say that the only people x might have e-mailed are x, y and z:

$$\forall s, \ E(x,s) \longrightarrow s = x \lor s = y \lor s = z.$$

Finally, we can say there is some student who emailed exactly two other two students by existentially quantifying x, y and z. So the complete translation is

$$\exists x \exists y \exists z. \ E(x,y) \land E(x,z) \land \tag{1}$$

$$x \neq y \land x \neq z \land y \neq z \land \tag{2}$$

$$\forall s, \ E(x,s) \longrightarrow s = x \lor s = y \lor s = z. \tag{3}$$

Problem 3. Express each of the following predicates and propositions in formal logic notation. The domain of discourse is the nonnegative integers, \mathbb{N} .

In addition to the propositional operators, variables and quantifiers, you may define predicates using addition, multiplication, and equality symbols, but no *constants* (like $0, 1, \ldots$). For example, the proposition "n is an even number" could be written

$$\exists m. (m+m=n).$$

(a) n is the sum of three perfect squares.

Solution.

$$\exists x \exists y \exists z. (x \cdot x + y \cdot y + z \cdot z = n)$$

Since the constant 0 is not allowed to appear explicitly, the predicate "x = 0" can't be written directly, but note that it could be expressed in a simple way as:

$$x + x = x$$
.

Then the predicate x > y could be expressed

$$\exists w. (y+w=x) \land (w \neq 0).$$

Note that we've used " $w \neq 0$ " in this formula, even though it's technically not allowed. But since " $w \neq 0$ " is equivalent to the allowed formula " $\neg (w + w = w)$," we can use " $w \neq 0$ " with the understanding that it abbreviates the real thing. And now that we've shown how to express "x > y", it's ok to use it too.

(b) x > 1.

Solution. The straightforward approach is to define x = 1 as $\forall y$. xy = y and then express x > 1 as $\exists y$. $(y = 1) \land (x > y)$.

(c) n is a prime number.

Solution.

IS-PRIME
$$(n) := (n > 1) \land \neg(\exists x \exists y. (x > 1) \land (y > 1) \land (x \cdot y = n))$$

(d) n is a product of two distinct primes.

Solution.

$$\exists x \exists y. \ \neg(x=y) \land (n=x \cdot y) \land \text{IS-PRIME}(x) \land \text{IS-PRIME}(y).$$

(e) There is no largest prime number.

Solution. Of course this is a true statement, so it could be expressed by the logically equivalent formula "1 = 1," but even if we didn't know this, we could transcribe the statement directly as:

$$\neg \left(\exists p. \; \mathsf{IS-PRIME}(p) \land (\forall q. \; \mathsf{IS-PRIME}(q) \longrightarrow p \geq q)\right)$$

_

Solutions to Problem Set 1

4

(f) (Goldbach Conjecture) Every even natural number n>2 can be expressed as the sum of two primes.

Solution. We can define n > 2 with the formula $\exists y. (y = 1) \land (x > y + y)$. Likewise, n = 2k can be expressed as n = k + k. Then we can express the Conjecture with:

$$\forall n. \ ((n > 2 \land \exists k. \ n = 2k) \longrightarrow \exists p \exists q. \ \text{IS-PRIME}(p) \land \text{IS-PRIME}(q) \land (n = p + q)))$$

(g) (Bertrand's Postulate) If n > 1, then there is always at least one prime p such that n .

Solution.

$$\forall n. \ ((n > 1) \longrightarrow (\exists p. \ \text{IS-PRIME}(p) \land (n < p) \land (p < 2n)))$$

Problem 4. If a set, A, is finite, then $|A| < 2^{|A|} = |\mathcal{P}(A)|$, and so there is no surjection from set A to its powerset. Show that this is still true if A is infinite. *Hint:* Remember Russell's paradox and consider $\{x \in A \mid x \notin f(x)\}$ where f is such a surjection.

Solution. We prove there is no surjection by contradiction: suppose there was a surjection $f: A \to \mathcal{P}(A)$ for some set A. Let $W := \{x \in A \mid x \notin f(x)\}$. So by definition,

$$(x \in W) \longleftrightarrow (x \notin f(x)) \tag{4}$$

for all $x \in A$. But $W \subseteq A$ by definition and hence is a member of $\mathcal{P}(A)$. This means W = f(a) for some $a \in A$, since f is a surjection to $\mathcal{P}(A)$. So we have from (4), that

$$(x \in f(a)) \longleftrightarrow (x \notin f(x)) \tag{5}$$

for all $x \in A$. Substituting a for x in (5) yields a contradiction, proving that there cannot be such an f.

Problem 5. (a) Prove that

$$\exists z. [P(z) \land Q(z)] \longrightarrow [\exists x. P(x) \land \exists y. Q(y)]$$
 (6)

is valid. (Use the proof in the subsection on Validity in Week 2 Notes as a guide to writing your own proof here.)

Solution. Proof. Assume

$$\exists z. [P(z) \land Q(z)]. \tag{7}$$

That is, $P(z) \wedge Q(z)$ holds for some element, z, of the domain. Let c be this element; that is, we have $P(c) \wedge Q(c)$.

In particular, P(c) holds by itself. So we conclude (by Existential Generalization) $\exists x \ P(x)$. We conclude $\exists y \ Q(y)$ similarly. Hence,

$$\exists x. \ P(x) \land \exists y. \ Q(y)$$
 (8)

holds.

This shows that (8) holds in any interpretation in which (7) holds. Therefore, (7) implies (8) in all interpretations, that is, (6) is valid.

(b) Prove that the converse of **(6)** is not valid by describing a counter model as in Week 2 Notes.

Solution. *Proof.* We describe a counter model in which, (8) is true and (7) is false. Namely, let the domain, D, be $\{\pi, e\}$, P(x) mean " $x = \pi$," and Q(y) mean "y = e." Then, $\exists x. \ P(x)$ is true (let x be π) and likewise $\exists y. \ Q(y)$ is true (let y be e), so (8) holds.

On the other hand, $Q(\pi)$ is not true, so $P(\pi) \wedge Q(\pi)$ is not true. Likewise $P(e) \wedge Q(e)$ is not true. Since these are the only elements of D, it is not true that there is an element, z, of D, such that $P(z) \wedge Q(z)$, That is, (7) is not true.

Problem 6. (a) Give an example where the following result fails:

False Theorem. For sets A, B, C, and D, let

$$L ::= (A \cup C) \times (B \cup D),$$

$$R ::= (A \times B) \cup (C \times D).$$

Then L=R.

Solution. If $A = D = \emptyset$ and B and C are both nonempty, then $L = C \times B \neq \emptyset$, but $R = \emptyset$.

(b) Identify the mistake in the following proof of the False Theorem.

Bogus proof. Since L and R are both sets of pairs, it's sufficient to prove that $(x, y) \in L \longleftrightarrow (x, y) \in R$ for all x, y.

The proof will be a chain of iff implications:

```
(x,y) \in L \qquad \qquad \text{iff} \\ x \in A \cup C \text{ and } y \in B \cup D, \qquad \qquad \text{iff} \\ \text{either } x \in A \text{ or } x \in C, \text{ and either } y \in B \text{ or } y \in D, \qquad \text{iff} \\ (x \in A \text{ and } y \in B) \text{ or else } (x \in C \text{ and } y \in D), \qquad \text{iff} \\ (x,y) \in A \times B, \text{ or } (x,y) \in C \times D, \qquad \qquad \text{iff} \\ (x,y) \in (A \times B) \cup (C \times D) = R.
```

Solution. The mistake is in the third "iff." If $[x \in A \text{ or } x \in C, \text{ and either } y \in B \text{ or } y \in D]$, it does not necessarily follow that $(x,y) \in (A \times B) \cup (C \times D)$. It might be that (x,y) is in $A \times D$ instead. This happens, for example, if $A = \{1\}, B = \{2\}, C = \{3\}, D = \{4\}, \text{ and } (x,y) = (1,4).$

(c) Fix the proof to show that $R \subseteq L$.

Solution. Replacing the third "iff" by "which will be true when," yields a correct proof that $(x,y) \in L$ will be true when $(x,y) \in R$, which implies that $R \subseteq L$.