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Problem Set 10 Solutions 

1. A financial parable. 

(a) The bank becomes insolvent if the asset’s gain R ≤ −5 (i.e., it loses more than 5%). This 
probability is the CDF of R evaluated at −5. Since R is normally distributed, we can 
convert this CDF to be in terms of a standard normal random variable by subtracting away 
the mean and dividing by the standard deviation, and then look up the value in a standard 
normal CDF table. 

E[R] = 7, 

var(R) = 102 = 100, 

P(R ≤ −5) = P 
R − 7 ≤ −5 − 7 

= Φ(−1.2) ≈ 0.115. 
10 10 

Thus, by investing in just this one asset, the bank has a 11.5% chance of becoming insolvent. 

(b) If we model the Ri’s as independent normal random variables, then their sum R = (R1 + 
+ R20)/20 is also a normal random variable (see Example 4.11 on page 214 of the text). · · · 

Thus, we can calculate the mean and variance of this new R and proceed as in part (a). 
Note that since the random variables are assumed to be independent, the variance of their 
sum is just the sum of their individual variances. 

E[R] = (E[R1] + + E[R20])/20 = 7,· · · 
1 20 100 

var(R) = (var(R1) + + var(R20)) = 
· 

= 5,
202 · · · 

400 

P(R ≤ −5) = P 
R√−

5

7 ≤ −5√−
5

7 
= Φ(−5.367) ≈ 0.0000000439 = 4.39 · 10−8 . 

Thus, by diversifying and assuming that the 20 assets have independent gains, the bank 
has seemingly decreased its probability of becoming insolvent to a palatable value. 

(c) Now, if the gains Ri are positively correlated, then we can no longer sum up the individual 
variances; we need to account for the covariance between pairs of random variables. The 
covariance is given by 

1 
cov(Ri, Rj ) = ρ(Ri, Rj ) var(Ri)var(Rj ) = 

√
102 102 = 50. 

2 
·


From page 220 in the text, we know that the variance in this case is

  

20 20 
1 1 

var(R) = var Ri =  var(Ri) + cov(Ri, Rj ) 
20 400 

i=1 i=1 {(i,j)|i6=j} 
1 

= (20 100 + 380 50) = 52.5. 
400

· · 

Since we assume that R = (R1 + + R20)/20 is still normal, we can again apply the same · · · 
steps as in parts (a) and (b): 

E[R] = (E[R1] + + E[R20])/20 = 7,· · · 
var(R) = 52.5, 

= P 
R − 7 

= Φ(−1.656) ≈ 0.0488.P(R ≤ −5) √
52.5 

≤ −√5

52

−
.5

7 
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Thus, by taking into account the positive correlation between the assets’ gains, we are no 
longer as comfortable with the probability of insolvency as we thought we were in part (b). 

2. Let M and N be the number of males and females, respectively, that cast a vote. We need to 
find P (M > N), i.e., P (M − N > 0). The central limit theorem does not apply directly to 
the random variable M − N . However, the central limit theorem implies that M and N are 
well approximated by normal random variables. So, M −N is the difference of two independent 
approximately normal random variables. Since the difference of two normal random variables is 
itself normal, it follows that M −N is approximately normal. The mean and variance of M −N 
are found by 

E[M − N ] = 300 0.4 + 196 0.5 = 120 − 98 = 22,· · 
var(M − N) = var(M) + var(N) = 300 0.4 0.6 + 196 0.5 0.5 = 121.· · · · 

Thus, the standard deviation of M − N is 11. Let Z be a standard normal random variable. 
Using the central limit theorem approximation, we obtain 

P(M − N > 0) = P 
M − N − 22 

> − 22 

11 11 
≈ P(Z ≥ −2) 

= 0.9772. 

A slightly more refined estimate is obtained by expressing the event of interest as P(M − N ≥
1/2). We then have 

M − N − 22 21.5 
P(M − N > 1/2) = P 

11 
≥ − 

11 
≈ P(Z ≥ −1.95) 

= 0.974. 

3.	 (a) Using the Central Limit Theorem, we obtain P(n 
2 −10 ≤ Sn ≤ n 

2 +10) ≈ Φ( √20
n )−Φ(−√20

n ) →
0 as n → ∞. 

(b) The limit is 1, by the weak law of large numbers. 

(c) Using the Central Limit Theorem, we obtain P(n 
2 − 

√
2 
n ≤ Sn ≤ n 

2 + 
√
2 
n ) Φ(1)−Φ(−1) = →

0.6826. 

4.	 (a) Let C denote the coin that Bob received, so that C = 1 if Bob received the first coin, and 
C = 2 if Bob received the second coin. Then P(C = 1) = p and P(C = 2) = 1 − p. Given 
C, the number of heads Y in 3 independent tosses is a binomial random variable. 

We can find the probability that Bob received the first coin given that he observed k heads 
using Bayes’ rule. 
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P(C = 1 Y = k) = 
P(Y = k | C = 1) · P(C = 1) |

P (Y = k C = 1) P(C = 1) + P(Y = k C = 2) P(C = 2) |
(

3 

·
) 

(1/3)k(2/3)3−kp 

| · 

= (3) 
k · 

(

3
) 

(1/3)k(2/3)3−k p + (2/3)k(1/3)3−k (1 − p)
k k

· · · · 
23−kp 1 

= = 
23−kp + 2k(1 − p) 1 + 1−p 22k−3 

p 

(b) We want to find k so that the following inequality holds. 

P(C = 1 Y = k) > p|
23−kp 

23−kp + 2k(1 − p) 
> p 

Note that if p = 0 or p = 1, there is no value of k that satisfies the inequality. We now solve 
it for 0 < p < 1: 

23−k 

> 1 
23−kp + 2k(1 − p) 

23−k > 23−k p + 2k(1 − p) 

23−k(1 − p) > 2k(1 − p) 

23−k > 2k 

2k < 3 

k < 3/2 

For 0 < p < 1, k = 0 or k = 1 the probability that Alice sent the first coin increases. The 
inequality does not depend on p, and so does not change when p increases. Intuitively, this 
makes sense: lower values of k increase Bob’s belief he got the coin with lower probability 
of heads. 

(c) Given that Bob observes k heads, Bob must decide on whether the first or second coin was 
used. To minimize the error, he should decide it is the first coin when P(C = 1 | Y = k) ≥
P(C = 2 Y = k). Thus, we have the decision rule given by |

P(C = 1 | Y = k) ≥ P(C = 2 | Y = k) 

23−kp 2k(1 − p) 

23−kp + 2k(1 − p) 
≥ 

23−kp + 2k(1 − p) 

23−k p ≥ 2k(1 − p) 

22k−3 p ≤ 
1 − p 
3 1 p

k ≤ 
2 

+ 
2

log2 1 − p 
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(d) 

(e) 

(f) 

(g) 

3+log
2 2i. If p = 2/3, the threshold in the rule above is equal to 2 = 2. Therefore, Bob will 

decide that he received the first coin when he observes 0, 1 or 2 heads, and will decide 
that he received the second coin when he observes 3 heads. 
We find the probability of a correct decision using the total probability law: 

P(Correct) = P(Correct | C = 1) · p + P(Correct | C = 2) · (1 − p) 

= P(Y < 3 | C = 1) · p + P(Y = 3 | C = 2) · (1 − p) 

= (1 − P(Y = 3 | C = 1)) · p + P(Y = 3 | C = 2) · (1 − p) 

= (1 − (1/3)3)(2/3) + (2/3)3(1/3) = 20/27 ≈ .741 

ii. In absence of any data, all Bob can do is decide he received the first coin with some 
probability q. Note that this rule includes the deterministic decisions that he received 
either the first coin (q = 1) or the second coin (q = 0). 
In this case, the probability of correct decision is equal to 

P(Correct) = P(Correct | C = 1) · p + P(Correct | C = 2)

1 +

· (1
q 

− p) 

= qp + (1 − q)(1 − p) = 1 − p + q(2p − 1) = 
3 

Clearly, the probability of the correct decision is maximized (or the probability of error 
is minimized) when q = 1, i.e., when Bob deterministically decides he received the first 
coin. In this case, P(Correct) = 2/3 ≈ .667. Observing 3 coin tosses increases the 
probability of the correct decision by 2/27 ≈ .074. 

If p is increased, the threshold in the decision rule in part (c) goes up, i.e., the range of

values of k for which Bob decides he received the first coin can only go up.


Bob will never decide he received the first coin if the threshold in the rule above is below

zero:


3 1 p
+ log2 < 0 

2 2 1 − p 
p

log2 < 
1 − p 

−3 

p 1 
< 

1 − p	 8 
1 

p < 
9 

If p < 1/9, the prior probability of receiving the first coin is so low that no amount of 
evidence from 3 tosses of the coin will make Bob decide he received the first coin. 

Bob will always decide he received the first coin if the threshold in the rule above is equal 
to or above 3: 

3 1 p
+ log2 ≥ 3 

2 2 1 − p 
p

log2 1 − p 
≥ 3 

p 

1 − p 
≥ 8 

8 
p ≥ 

9 
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If p ≥ 8/9, the prior probability of receiving the first coin is so high that no amount of 
evidence from 3 tosses of the coin will make Bob decide he received the second coin. 

5. (a) Using the total probability theorem, we have 

∫ 1 1 

pT1 (t) = pT1 Q(t, q)fQ(q)dq = (1 − q)t−1qdq = 
1 

for t = 1, 2, . . . | (t + 1)t0 0 

(b) The least squares estimate coincides with the conditional expectation of Q given T1, which 
is derived as 

∫ 1 

E[Q | T1 = t] = pQ|T1 (q | t)qdq 
0 

= 
1 pT1|Q(t | q)fQ(q)

qdq 
0 pT1 (t) 
∫ 1 

= t(t + 1)q(1 − q)t−1qdq 
0 
∫ 1 

= t(t + 1)q 2(1 − q)t−1dq 
0 

= t(t + 1)
2(t − 1)! 

(t + 2)! 

2 
= 

t + 2 

(c) We write the posterior probability distribution of Q given T1 = t1, . . . , Tk = tk 

∏k 

fQ|T1,...,Tk ∫ 1 

fQ(q) 
∏

i
k 

PTi (Ti = ti | Q = q)
(q t1, . . . , tk) =|

0 fQ(q) 
P

i PTi (Ti = ti | Q = q)dq 
k 

qk(1 − q) i ti−k 

= 
c 

1 k 
= q k(1 − q)

P

i ti−k , 
c 

where the denominator integrates out q so it could be viewed as a constant scalar c. 

To maximize the above probability we set its derivative with respect to q to zero 

k 

ikqk−1(1 − q)
P

k

i ti−k − ( 
∑ 

ti − k)q k(1 − q)
P

k ti−k−1 = 0, 
i 

or equivalently 
k 

k(1 − q) − ( ti − k)q = 0, 
i 

which yields the MAP estimate 
k 

q̂ = 
∑k . 

i=1 ti 

For this part only assume q is sampled from the random variable Q which is now uniformly 
distributed over [0.5, 1] 
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(d) The LLSE of T1 given T2 is 

T̂2 = E[T2] +
cov(T1, T2) 

var(T1) 
(T1 − E[T1]), 

where the coefficients are 

E[T1] = E[T2] = 

∫ 1 

0.5 
fQ(q)E[T |Q = q]dq = 

∫ 1 

0.5 
2 ∗ 1/qdq = 2 ln 2, 

and from the law of total variance 

var(T1) = var(T2) = E [var(T1 | Q)] + var [E(T1 | Q)] 

= E 

[ 
1 − Q 

Q2 

] 

+ var 

[ 
1 

Q 

] 

= E[1/Q2] − E[1/Q] + E[1/Q2] − E[1/Q]2 

= 

∫ 2 

0.5 
fQ(q) 

1 

q2 dq − 
∫ 2 

0.5 
fQ(q) 

1 

q 
dq + 

∫ 2 

0.5 
fQ(q) 

1 

q2 dq − 
(∫ 2 

0.5 
fQ(q) 

1 

q 
dq 

)2 

= 2 − 2 ln 2 + 2 − (2 ln 2)2 

= 4 − 2 ln 2 − (2 ln 2)2 , 

and their covariance 

cov(T1, T2) = E[T1T2] − E[T1]E[T2] 

= E [E[T1T2 | Q]] − E[T1]E[T2] 

= E [E[T1 | Q]E[T2 | Q]] − E[T1]E[T2] 

= E 
[ 
1/Q2] 

] 
− E[T1]E[T2] 

= 2 − 4(ln 2)2 

Therefore we have derived the linear least squares estimator 

6. (a) 

T̂2 = 2 ln 2 + 
2 − 4(ln 2)2 

4 − 2 ln 2 − (2 ln 2)2 (T1 − 2 ln 2) ≈ 1.543 + 0.113T1. 

To find the normalization constant c we integrate the joint PDF: 

∫ 1 

0 

∫ 1 

0 
fX,Y (x, y) dy dx = c 

∫ 1 

0 

∫ 1 

0 
xy dy dx = c 

∫ 1 

0 
1/2x dx = c/4. 

Therefore, c = 4. 

(b) To construct the conditional expectation estimator, we need to find the conditional proba­
bility density. 

fX|Y (x | y) = 
fX,Y (x, y) 

fY (y) 
= 

4xy 
∫ 1 
0 4xy dx 

= 
4xy 

2y 
= 2x, x ∈ (0, 1] 

Thus 

x̂CE(y) = E[X|Y = y] = 

∫ 1 

0 
x · 2x dx = 2/3. 
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(c) We first note that the conditional probability does not depend on y. Therefore, X and Y are 
independent, and whether or not we observe Y = y does not affect the estimate in part (b). 

Another way to see this is to consider that if we do not observe y, we can compute the 
∫ 1

marginal fX (x) = 0 4xydy = 2x which is equal to the conditional density, and will therefore 
produce the same estimate. 

(d) Since X and Y are independent, no estimator can make use of the observed value of Y to 
estimate X. The MAP estimator for X is equal to 1, regardless of what value y we observe, 
since the conditional (and the marginal) density is maximized at 1. 

†Required for 6.431; optional challenge problem for 6.041 Page 7 of 7 



MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
Fall 2013

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



