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(e) (7 points)
In the new universe in which X = 2, we are asked to compute the conditional PDF of Y given
the event Y ≥ 3.

f 2)
fY |X,Y 3(y | 2) = Y |X(y |

≥ .
P(Y ≥ 3 | X = 2)

We first calculate the P(Y ≥ 3 | X = 2).

∞
P(Y ≥ 3 | X = 2) =

∫
fY

3
|X(y | 2)dy

=
∫ ∞

2e−2ydy
3

= 1− FY |X(3 | 2)

= 1− (1− e−2·3)

= e−6,

where FY X(3 2) is the CDF of an exponential random variable with λ = 2 evaluated at y = 3.| |
Substituting the values of fY X(y | 2) and P(Y| ≥ 3 | X = 2) yields

2e6e−2y, y 3
fY |X,Y (≥3 y | 2) =

{
≥

0, otherwise.

Alternatively, fY |X(y | 2) is an exponential random variable with λ = 2. To compute the
conditional PMF fY X,Y 3(y | 2), we can apply the memorylessness property of an exponential| ≥
variable. Therefore, this conditional PMF is also an exponential random variable with λ = 2,
but it is shifted by 3.

(f) (7 points)
Let’s define Z = e2X . Since X is an exponential random variable that takes on non-negative
values (X ≥ 0), Z ≥ 1. We find the PDF of Z by first computing its CDF.

FZ(z) = P(Z ≤ z)
= P(e2X ≤ z)
= P(2X ≤ ln z)

ln z
= P(X ≤ )

2
= 1− e−

ln z
2

= 1− eln z
− 1

2

The CDF of Z is:

FZ(z) =
{

1− z−
1
2 z ≥ 1

0, z < 1
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Differentiating the CDF of Z yields the PDF

fZ(z) =
{

1
2z
− 3

2 z ≥ 1
0, z < 1

Alternatively, you can apply the PDF formula for a strictly monotonic function of a continuous
random variable. Recall if z = g(x) and x = h(z), then∣∣∣dhfZ(z) = fX(h(z)) ∣dy (z)

∣∣∣∣ .
In this problem, z = e2x and x = 1

Z2 ln z. Note that f (z) is nonzero for z > 1. Since X is an
exponential random variable with λ = 1, fX(x) = ex. Thus,

fZ(z) = e−
1
2
ln z

∣∣∣∣ 1
2z

∣
ln= e z−

1

∣∣∣
2 1

2z

=
1 3

z−
2

2 z ≥ 1,

where the second equality holds since the expression inside the absolute value is always positive
for z ≥ 1.

Problem 3. (10 points)

(a) (5 points) The quantity E[X | Y ] is always:

(i) A number.

(ii) A discrete random variable.

(iii) A continuous random variable.

(iv) Not enough information to choose between (i)-(iii).

If X and Y are not independent, then E[X | Y ] is a function of Y and is therefore a continuous
random variable. However if X and Y are independent, then E[X | Y ] = E[X] which is a
number.

(b) (5 points) The quantity E[E[X | Y,N ] | N ] is always:

(i) A number.

(ii) A discrete random variable.

(iii) A continuous random variable.

(iv) Not enough information to choose between (i)-(iii).

If X, Y and N are not independent, then the inner expectation G(Y,N) = E[X | Y,N ] is
a function of Y and N . Furthermore E[G(Y,N) | N ] is a function of N , a discrete random
variable. If X, Y and N are independent, then the inner expectation E[X | Y,N ] = E[X],
which is a number. The expectation of a number given N is still a number, which is a special
case of a discrete random variable.
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Problem 4. (25 points)

(a) (i) (5 points)
Using the Law of Iterated Expectations, we have

1
E[X] = E[E[X | Q]] = E[Q] = .

2

(ii) (5 points)
X is a Bernoulli random variable with a mean p = 1 X2 and its variance is var( ) =
p(1− p) = 1/4.

(b) (7 points)
We know that cov(X,Q) = E[XQ]−E[X]E[Q], so first let’s calculate E[XQ]:

1
E[XQ] = E[E[XQ | Q]] = E[QE[X | Q]] = E[Q2] = .

3

Therefore, we have
1

cov(X,Q) =
3
− 1

2
· 1

2
=

1
.

12

(c) (8 points)
Using Bayes’ Rule, we have

fQ(q)pX Q(1 | q)
fQ X(q | 1) = |
| pX(1)

=
fQ(q)P(X = 1 | Q = q)

, 0
P(X = 1)

≤ q ≤ 1.

Additionally, we know that
P(X = 1 | Q = q) = q,

and that for Bernoulli random variables

1
P(X = 1) = E[X] = .

2

Thus, the conditional PDF of Q given X = 1 is

1
fQ|X(q | 1) =

· q

{1/2
2q, 0

=
≤ q ≤ 1,

0, otherwise.

Problem 5. (21 points)

(a) (7 points)

P(S ≥ 1) = P(min{X,Y } ≥ 1) = P(X ≥ 1 and Y ≥ 1) = P(X ≥ 1)P(Y 1)

= (1− F (1))(1− F (1)) = (1− Φ(1))2 ≈ (1− 0.8413)2
≥

X Y ≈ 0.0252.
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(b) (7 points)
Recalling Problem 2 of Problem Set 6, we have

P(s ≤ S and L ≤ `) = P(s ≤ min{X,Y } and max{X,Y } ≤ `)
= P(s ≤ X and s ≤ Y and X ≤ ` and Y ≤ `)
= P(s ≤ X ≤ `)P(s ≤ Y ≤ `)
= (FX(`)− FX(s))(FY (`)FY (s)).

(c) (7 points)
Given that s ≤ s + δ ≤ `, the event {s ≤ S ≤ s + δ, ` ≤ L ≤ ` + δ} is made up of the union
of two disjoint possible events:

{s ≤ X ≤ s+ δ, ` ≤ Y ≤ `+ δ} ∪ {s ≤ Y ≤ s+ δ, ` ≤ X ≤ `+ δ}.

In other words, either S = X and L = Y , or S = Y and L = X. Because the two events are
disjoint, the probability of their union is equal to the sum of their individual probabilities.

Using also the independence of X and Y , we have

P(s ≤ S ≤ s+ δ, ` ≤ L ≤ `+ δ) = P(s ≤ X ≤ s+ δ, ` ≤ Y ≤ `+ δ)
+P(s ≤ y ≤ s+ δ, ` ≤ X ≤ `+ δ)

= P(s ≤ X ≤ s+ δ)P(` ≤ Y ≤ `+ δ)
+P(s ≤ y ≤ s+ )P(∫ δ ` ≤ X
s+δ ∫ `+δ

≤ `+ δ)

= fX(x)dx fY (y)dy
s∫ `

s+δ

+ fY (y)dy
s

∫ `+δ

fX(x)dx
`
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