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Problem Set 4: Solutions 

1. (a) From the joint PMF, there are six (x, y) coordinate pairs with nonzero probabilities of 
occurring. These pairs are (1, 1), (1, 3), (2, 1), (2, 3), (4, 1), and (4, 3). The probability 
of a pair is proportional to the sum of the squares of the coordinates of the pair, x2 + y2 . 
Because the probability of the entire sample space must equal 1, we have: 

(1 + 1)c + (1 + 9)c + (4 + 1)c + (4 + 9)c + (16 + 1)c + (16 + 9)c = 1. 

1Solving for c, we get c = 72 . 

(b) There are three sample points for which y < x: 

P(Y < X) = P ({(2, 1)}) + P ({(4, 1)}) + P ({(4, 3)}) = 
5 

+
17 

+
25 

= 47 . 
72 72 72 72 

(c) There are two sample points for which y > x: 

P(Y > X) = P ({(1, 3)}) + P ({(2, 3)}) =
10 

+
13 

= 23 . 
72 72 72 

(d) There is only one sample point for which y = x: 

P(Y = X) = P ({(1, 1)}) = 2 .72 

Notice that, using the above two parts,


47 23 2

P(Y < X) + P(Y > X) + P(Y = X) = + + = 1 

72 72 72


as expected.


(e) There are three sample points for which y = 3: 

10 13 25 48 
P(Y = 3) = P ({(1, 3)}) + P ({(2, 3)}) + P ({(4, 3)}) = + + = 72 . 

72 72 72 

(f) In general, for two discrete random variable X and Y for which a joint PMF is defined, we 
have 

∞ ∞ 

pX (x) = pX,Y (x, y) and pY (y) = pX,Y (x, y). 
y=−∞ x=−∞ 

In this problem the ranges of X and Y are quite restricted so we can determine the marginal 
PMFs by enumeration. For example, 

18 
pX (2) = P ({(2, 1)}) + P ({(2, 3)}) = . 

72 

Overall, we get: 
 



12/72, if x = 1, 


 24/72, if y = 1,
18/72, if x = 2, 

pX (x) =
 and pY (y) = 48/72, if y = 3,
42/72, if x = 4,




0, otherwise. 

0, otherwise 
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(g) In general, the expected value of any discrete random variable X equals 

∞ 

E[X] = xpX (x). 
x=−∞ 

For this problem, 
12 18 42 

E[X] = 1 · + 2 · + 4 · = 3 
72 72 72 

and 
24 48 7

E[Y ] = 1 · + 3 · = 3 . 
72 72 

To compute E[XY ], note that pX,Y (x, y) =6 pX (x)pY (y). Therefore, X and Y are not inde­
pendent and we cannot assume E[XY ] = E[X]E[Y ]. Thus, we have 

E[XY ] = xypX,Y (x, y)

x y


2 5 17 10 13 25 61 = 1 · + 2 · + 4 · + 3 · + 6 · + 12 · = . 
72 72 72 72 72 72 9 

(h) The variance of a random variable X can be computed as E[X2]−E[X]2 or as E[(X −E[X])2]. 
We use the second approach here because X and Y take on such limited ranges. We have 

3var(X) = (1 − 3)2 12 
+ (2 − 3)2 18 

+ (4 − 3)2 42 
= 272 72 72


and

8var(Y ) = (1 − 

7
)2 24 

+ (3 − 
7
)2 48 

9 .= 
3 72 3 72 

X and Y are not independent, so we cannot assume var(X + Y ) = var(X) + var(Y ). The 
variance of X +Y will be computed using var(X +Y ) = E[(X +Y )2]−(E[X +Y ])2 . Therefore, 
we have 

E[(X + Y )2] = 4 · 
2 

+ 9 · 
5 

+ 25 · 
17 

+ 16 · 
10 

+ 25 · 
13 

+ 49 · 
25 

=
547 

. 
72 72 72 72 72 72 18 

(E[X + Y ])2 = (E[X] + E[Y ])2 = 3 + 
7
�2 256 

= . 
3 9 

Therefore, 
547 256 35 var(X + Y ) = − = 18 . 
18 9 

(i) There are four (x, y) coordinate pairs in A : (1,1), (2,1), (4,1), and (4,3). Therefore, 
1 49 

P(A) = 72 (2 + 5 + 17 + 25) = 72 . To find E[X | A] and var(X | A), pX|A(x) must be 
calculated. We have 

pX|A(x) = 

 

 




2/49, if x = 1, 
5/49, if x = 2, 
42/49, if x = 4, 
0, otherwise, 
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2 5 42 180 
E[X | A] = 1 · + 2 · + 4 · = 49 ,

49 49 49 

E[X2 | A] = 12 · 
2 

+ 22 · 
5 

+ 42 · 
42 

=
694 

,
49 49 49 49 

694 
�

180 
�2 

1606 var(X | A) = E[X2 | A] − (E[X | A])2 = − = 2401 ,
49 49 

2. Consider a sequence of six independent rolls of this die, and let Xi be the random variable 
corresponding to the ith roll. 

(a) What is the probability that exactly three of the rolls have result equal to 3? Each roll Xi 

can either be a 3 with probability 1/4 or not a 3 with probability 3/4. There are 
�

3
6� ways 

of placing the 3’s in the sequence of six rolls. After we require that a 3 go in each of these 
spots, which has probability (1/4)3, our only remaining condition is that either a 1 or a 2 go 
in the other three spots, which has probability (3/4)3 . So the probability of exactly three 

rolls of 3 in a sequence of six independent rolls is 
�6
3 

�
(4
1 )3(4

3 )3 . 

(b) What is the probability that the first roll is 1, given that exactly two of the six rolls have 
result of 1? The probability of obtaining a 1 on a single roll is 1/2, and the probability of 
obtaining a 2 or 3 on a single roll is also 1/2. For the purposes of solving this problem we 
treat obtaining a 2 or 3 as an equivalent result. We know that there are 

�

2
6
� 

ways of rolling 

exactly two 1’s. Of these 
�6
2 

� 
ways, exactly 

�5
1 

� 
= 5 ways result in a 1 in the first roll, since 

we can place the remaining 1 in any of the five remaining rolls. The rest of the rolls must 
be either 2 or 3. Thus, the probability that the first roll is a 1 given exactly two rolls had 

an outcome of 1 is 5 
(6 
2
) 

. 

(c) We are now told that exactly three of the rolls resulted in 1 and exactly three resulted in 2. 
What is the probability of the sequence 121212? We want to find 

P(121212) 
P(121212 | exactly three 1’s and three 2’s) = . 

P(exactly 3 ones and 3 twos) 

Any particular sequence of three 1’s and three 2’s will have the same probability: (1/2)3(1/4)3 . 
There are 

�
6
3 

� 
possible rolls with exactly three 1’s and three 2’s. Therefore, 

P(121212 | exactly three 1’s and three 2’s) = 
(
1 
6

3
) 

. 

(d) Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of 
the number of 3’s. Let A be the event that at least one roll results in a 3. Then 

�6 

P(A) = 1 − P(no rolls resulted in 3) = 1 − . 

Now let K be the random variable representing the number of 3’s in the 6 rolls. The 
(unconditional) PMF pK (k) for K is given by 

�
6
� �

1
�k �3

�6−k 

pK (k) = . 
k 4 4 

�
3 

4 
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We find the conditional PMF pk|A(k | A) using the definition of conditional probability: 

P({K = k} ∩ A) 
pK|A(k | A) = . 

P(A) 

Thus we obtain 

1 
�
6 (1

4 )
k(3

4 )
6−k if k = 1, 2, . . . , 6, 

pK|A(k | A) = 1−(3/4)6 k 

0 otherwise. 

Note that pK|A(0 | A) = 0 because the event {K = 0} and the event A are mutually 
exclusive. Thus the probability of their intersection, which appears in the numerator in the 
definition of the conditional PMF, is zero. 

3. By the definition of conditional probability, 

P({X = i} ∩ {X + Y = n})
P(X = i | X + Y = n) = . 

P(X + Y = n) 

The event {X = i} ∩ {X + Y = n} in the numerator is equivalent to {X = i} ∩ {Y = n − i}. 
Combining this with the independence of X and Y , 

P({X = i} ∩ {X + Y = n}) = P({X = i} ∩ {Y = n − i}) = P(X = i)P(Y = n − i). 

In the denominator, P(X +Y = n) can be expanded using the total probability theorem and the 
independence of X and Y : 

n−1 

P(X + Y = n) = P(X = i)P(X + Y = n | X = i) 
i=1 

n−1 

= P(X = i)P(i + Y = n | X = i) 
i=1


n−1


= P(X = i)P(Y = n − i | X = i) 
i=1


n−1


= P(X = i)P(Y = n − i) 
i=1 

Note that we only get non-zero probability for i = 1, . . . , n − 1 since X and Y are geometric 
random variables. 

The desired result is obtained by combining the computations above and using the geometric 
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PMF explicitly: 

P(X = i)P(Y = n − i)
P(X = i | X + Y = n) = 

n−1 

P(X = i)P(Y = n − i) 
i=1 

(1 − p)i−1p(1 − p)n−i−1p 
= 

n−1 

(1 − p)i−1 p(1 − p)n−i−1 p 
i=1 

(1 − p)n 

= 
n−1 

(1 − p)n 

i=1 

(1 − p)n 

= 
n−1 

(1 − p)n 1 
i=1 

1 
= , i = 1, . . . , n − 1. 

n − 1

4. (a) Since P(A) > 0, we can show independence through P(B) = P(B | A): 

P(B ∩ A) 
�
8
� 
p6(1 − p)2p


P(B | A) = = 6 = p = P(B).

P(A) 

�8
6 

� 
p6(1 − p)2


Therefore, A and B are independent. 

(b) Let C be the event “3 heads in the first 4 tosses” and let D be the event “2 heads in the last 
3 tosses”. Since there are no overlap in tosses in C and D, they are independent: 

P(C ∩ D) = P(C)P(D) 
�

4
� �

3
� 

= p 3(1 − p) · p 2(1 − p)
3 2 

= 12p 5(1 − p)2 . 

(c) Let E be the event “4 heads in the first 7 tosses” and let F be the event “2nd head occurred 
during 4th trial”. We are asked to find P(F | E) = P(F ∩ E)/P(E). The event F ∩E occurs 
if there is 1 head in the first 3 trials, 1 head on the 4th trial, and 2 heads in the last 3 trials. 
Thus, we have 

P(F ∩ E) 
�

1
3� p(1 − p)2 · p · 

�

2
3� p2(1 − p)

P(F | E) = = 
P(E) 

�
7
4 

� 
p4(1 − p)3 

�
3
� �

3
� 

· 1 · 91 2 = = .�7� 35 
4 

Alternatively, we can solve this by counting. We are given that 4 heads occurred in the first 
7 tosses. Each sequence of 7 trials with 4 heads is equally probable, the discrete uniform 
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probability law can be used here. There are 
�

4
7� outcomes in E. For the event E ∩ F , there 

are 
�
3
1 

� 
ways to arrange 1 head in the first 3 trials, 1 way to arrange the 2nd head in the 4th 

trial and 
�

2
3� ways to arrange 2 heads in the first 3 trials. Therefore, 

�3� �3� · 1 · 9 
P(F | E) = 1 

�7� 
2 = 

35 
. 

4 

(d) Let G be the event “5 heads in the first 8 tosses” and let H be the event “3 heads in the last 
5 tosses”. These two events are not independent as there is some overlap in the tosses (the 
6th, 7th, and 8th tosses). To compute the probability of interest, we carefully count all the 
disjoint, possible outcomes in the set G ∩ H by conditioning on the number of heads in the 
6th, 7th, and the 8th tosses. We have 

P(G ∩ H) = P(G ∩ H | 1 head in tosses 6–8)P(1 head in tosses 6–8) 

+ P(G ∩ H | 2 heads in tosses 6–8)P(2 heads in tosses 6–8) 

+ P(G ∩ H | 3 heads in tosses 6–8)P(3 heads in tosses 6–8) 

�
5
� �

3
� 

= p 4(1 − p) · p 2 · p(1 − p)2 

4 1 
�

5
� �

2
� �

3
� 

+ p 3(1 − p)2 · p(1 − p) · p 2(1 − p)
3 1 2 

�
5
� 

+ p 2(1 − p)3 · (1 − p)2 · p 3 . 
2 

= 15p 7(1 − p)3 + 60p 6(1 − p)4 + 10p 5(1 − p)5 . 

5. Let Ik be the reward paid at time k. We have 

E[Ik] = P(Ik = 1) = P(T at time k and H at time k − 1) = p(1 − p). 

Computing E[R] is immediate because 

� 
n 

� 
n 

E[R] = E Ik = E [Ik] = np(1 − p). 
k=1 k=1 

The variance calculation is not as easy because the Iks are not all independent: 

E[Ik 
2] = p(1 − p) 

E[IkIk+1] = 0 because rewards at times k and k + 1 are inconsistent 

E[IkIk+ℓ] = E[Ik]E[Ik+ℓ] = p 2(1 − p)2 for ℓ ≥ 2 
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n n n n 

E[R2] = E[( 
� 

Ik)( 
� 

Im)] = 
� � 

E[IkIm] 
k=1 m=1 k=1 m=1 

= np(1 − p) + 0 + (n 2 − 3n + 2)p 2(1 − p)2 

� �� � ����	 � �� � 

n terms with k = m 2(n − 1) terms with |k − m| = 1 n2 − 3n + 2 terms with |k − m| > 1 

var(R) = E[R2] − (E[R])2


= np(1 − p) + (n 2 − 3n + 2)p 2(1 − p)2 − n 2 p 2(1 − p)2


= np(1 − p) − (3n − 2)p 2(1 − p)2 .


G1† . (a)	 We know that IA is a random variable that maps a 1 to the real number line if ω occurs 
within an event A and maps a 0 to the real number line if ω occurs outside of event A. A 
similar argument holds for event B. Thus we have, 

1, with probability P(A)
IA(ω) = 

0, with probability 1 − P(A) 

1, with probability P(B)
IB (ω) = 

0, with probability 1 − P(B) 

If the random variables, A and B, are independent, we have P(A ∩ B) = P(A)P(B). The 
indicator random variables, IA and IB, are independent if, PIA,IB (x, y) = PIA (x)PIB (y) 

We know that the intersection of A and B yields. 

PIA,IB (1, 1)	 = PIA (1)PIB (1) 

= P(A)P(B) 

= P(A ∩ B) 

We also have, 

PIA,IB (1, 1) = P(A ∩ B) = P(A)P(B) = PIA (1)PIB (1) 

PIA,IB (0, 1) = P(Ac ∩ B) = P(Ac)P(B) = PIA (0)PIB (1) 

PIA,IB (1, 0) = P(A ∩ Bc) = P(A)P(Bc) = PIA (1)PIB (0) 

PIA,IB (0, 0) = P(Ac ∩ Bc) = P(Ac)P(Bc) = PIA (0)PIB (0) 

(b) If X = IA, we know that 

E[X] = E[IA] = 1 · P(A) + 0 · (1 − P(A)) = P(A) 

†Required for 6.431; optional for 6.041	 Page 7 of 7 
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