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1. Let A be the event that the first toss is a head and let B be the event that the second toss is a 
head. We must compare the conditional probabilities P(A ∩B|A) and P(A ∩B|A ∪B). We have 

P((A ∩ B) ∩ A) P(A ∩ B)
P(A ∩ B|A) =	 = ,

P(A) P(A) 

and 
P((A ∩ B) ∩ (A ∪ B)) A ∩ B 

P(A ∩ B|A ∪ B) =	 = . 
P(A ∪ B) A ∪ B 

Since P(A ∪ B) ≥ P(A), the first conditional probability above is at least as large, so Alice is 
right, regardless of whether the coin is fair or not. In the case where the coin is fair, that is, if 
all four outcomes HH, HT, T H, T T are equally likey, we have 

P(A ∩ B) 1/4 1 P(A ∩ B) 1/4 
= = ,	 = = 1/3. 

P(A) 1/2 2 P(A ∪ B) 3/4 

A generalization of Alice’s reasoning is that if A, B, and C are events such that B ⊂ C and 
A ∩ B = A ∩ C (for example, if A ⊂ B ⊂ C), then the event A is at least as likely if we know 
that B has occurred than if we know that C has occurred. Alice’s reasoning corresponds to the 
special case where C = A ∪ B. 

2.	 (a) Each possible outcome has probability 1/36. There are 6 possible outcomes that are doubles, 
so the probability of doubles is 6/36 = 1/6. 

(b) The conditioning event (sum is 4 or less) consists of the 6 outcomes 

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}, 

2 of which are doubles, so the conditional probability of doubles is 2/6 = 1/3. 

(c) There are 11 possible outcomes with at least one 6, namely, (6, 6), (6, i), and (i, 6), for 
i = 1, 2, . . . , 5. Thus, the probability that at least one die is a 6 is 11/36. 

(d) There are 30 possible outcomes where the dice land on different numbers. Out of these, 
there are 10 outcomes in which at least one of the rolls is a 6. Thus, the desired conditional 
probability is 10/30 = 1/3. 

3. (a)	 See the textbook, Example 1.13, page 29. 

(b) See the textbook, Example 1.17, page 33. 

4. See the textbook, Example 1.12 (The Monty Hall Problem), page 27. 

An alternative solution is given below: 

Let Pi denote the event where the prize is behind door i, Ci denote the event where you initially 
choose door i, and Oi denote the event where your friend opens door i. The corresponding prob­
ability tree is: 
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(a) The probability of winning when not switching from your initial choice is the probability 
that the prize is behind the door you initially chose: 

P(Win when not switching) = P(P1 ∩ C1) + P(P2 ∩ C2) + P(P3 ∩ C3) 

= P(P1)P(C1|P1) + P(P2)P(C2|P2) + P(P3)P(C3|P3) 

= P(P1)P(C1) + P(P2)P(C2) + P(P3)P(C3) 

= 1/3 · (P(C1) + P(C2) + P(C3)) 

= 1/3 

(b) The probability of winning when switching from your initial choice is the probability that 
the prize is behind the remaining (unopened) door: 

P(Win when switching) = P(P1 ∩ C2 ∩ O3) + P(P1 ∩ C3 ∩ O2) + P(P2 ∩ C1 ∩ O3) 

+P(P2 ∩ C3 ∩ O1) + P(P3 ∩ C1 ∩ O2) + P(P3 ∩ C2 ∩ O1) 

= P(P1 ∩ C2) + P(P1 ∩ C3) + P(P2 ∩ C1) + P(P2 ∩ C3) 

+P(P3 ∩ C1) + P(P3 ∩ C2) 

= P(P1)P(C2) + P(P1)P(C3) + P(P2)P(C1) + P(P2)P(C3) 

+P(P3)P(C1) + P(P3)P(C2) 

= 2/3 · (P(C1) + P(C2) + P(C3)) 

= 2/3 

(c) Given C1, that you first choose door 1, with the new strategy of switching only if door 3 is 
opened, you win if the prize behind door 1 and door 2 is opened or if the prize is behind 
door 2 and door 3 is opened. 

P(Win with new strategy|C1) = P(P1 ∩ O2|C1) + P(P2 ∩ O3|C1) 

= P(P1|C1)P(O2|P1 ∩ C1) + P(P2|C1)P(O3|P2 ∩ C1) 

= P(P1)P(O2|P1 ∩ C1) + P(P2)P(O3|P2 ∩ C1) 

= 1/3 · P(O2|P1 ∩ C1) + 1/3 · 1 

= 1/3 · (P(O2|P1 ∩ C1) + 1) 

Given that your initial choice is door 1, the probability of winning under this new strategy 
is dependent on how your friend decides which of doors 2 or 3 to open if the prize also lies be­
hind door 1. If he always picks door 2, then P(O2|P1∩C1) = 1 and P(Win with new strategy|C1) = 
2/3. If he picks between doors 2 and 3 with equal probability then P(O2|P1 ∩ C1) = 1/2 
and P(Win with new strategy|C1) = 1/2. 
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