MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

Tutorial 1: Answers February 16-17, 2006

1. (a)
$$\frac{1}{5}$$

(b) $(\frac{4}{5})(\frac{1}{3}) = \frac{4}{15}$
(c) $(\frac{2}{5})(\frac{1}{3}) + (\frac{3}{5})(\frac{2}{3}) = \frac{8}{15}$
(d) $\frac{2}{5}$
(e) $1 - \frac{3}{10} = \frac{7}{10}$

2. Our goal is to determine P(M|R), which we may find by means of Bayes' Rule:

$$P(M|R) = \frac{P(M \cap R)}{P(R)}$$

$$= \frac{P(M)P(R|M)}{P(M)P(R|M) + P(M^c)P(R|M^c)}$$

$$= \frac{(0.01)(0.88)}{(0.01)(0.88) + (0.99)(0.07)}$$

$$\approx \boxed{0.1127}$$

3. A_{12} and A_{13} are independent, and the same is true of any other pair from the events A_{12} , A_{13} , and A_{23} . However, A_{12} , A_{13} , and A_{23} are not independent. In particular, if A_{12} and A_{13} occur, then A_{23} also occurs.