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See textbook pg. 399

(a) N = 200, 000.
(b) N = 100, 000.

Let us fix some € > 0. We will show that P(Y,, > 0.5+ €) converges to 0. By symmetry, this will
imply that P(Y,, < 0.5 —¢€) also converges to zero, and it will follow that Y;, converges to 0.5, in
probability.

For the event {Y;, > 0.5 + €} to occur, we must have at least n + 1 of the random variables
X1,X9,...,Xopt1 to have a value of 0.5 + € or larger. Let Z; be a Bernoulli random variable
which is equal to 1 if and only if X; > 0.5 4 €:
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{Z1,Z,, ...} are i.i.d random variables and E[Z;] = P(Z; =1) = P(X; > 05+4+¢) =0.5 — €.

Hence, for the event {Y,, > 0.5 4 €} to occur, we must have at least n + 1 of the {Z;} to take
value 1,
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Note that P(Z; = 1) = 0.5 — e. By the weak law of large numbers, the sequence (Z; +
o+ Zopt1)/(2n 4+ 1) converges to 0.5 — e. To show that P (%ﬁf”“ > 0.5) converges
to zero, we need to show that for any given € > 0, there exists N such that for all n > N,

P (%ﬁf"“ > 0,5) < €. The fact that the sequence (Z1 + -+ Zan+1)/(2n + 1) converges to

2n+1 )
0.5 — € ensures the existence of such N. Since P(Y,, > 0.5+ ¢€) is bounded by P(Zﬁzilﬂzl > 0.5),
it also converges to zero.
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