LECTURE 20

Readings: Section 6.3

Lecture outline

- Markov Processes II
 - Markov process review.
 - Steady-state behavior.
 - Birth-death processes.

Review

- Discrete state, discrete time, time-homogeneous
 - Transition probabilities p_{ij}
 - Markov property

$$p_{ij} = P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

= $P(X_{n+1} = j | X_n = i)$

ullet State occupancy probabilities, given initial state i:

$$r_{ij}(n) = \mathbf{P}(X_n = j | X_0 = i)$$

• Key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

Recurrent and Transient States

- State i is recurrent if:
 - Starting from i , and from wherever you can go, there is a way of returning to i .
- If not recurrent, a state is called **transient**.
 - If i is transient then $\mathbf{P}(X_n=i) o 0$ as $n o \infty$.
 - State i is visited a finite number of times.

Recurrent Class:

 Collection of recurrent states that "communicate" to each other, and to no other state.

Periodic States

- The states in a recurrent class are **periodic** if:
 - They can be grouped into $\,d>1\,$ groups so that all transitions from one group lead to the next group.

Steady-State Probabilities

- Do the $r_{ij}(n)$ converge to some π_j ? (independent of the initial state i)
- Yes, if:
 - Recurrent states are all in a single class, and
 - No periodicity.
- Start from key recursion: $r_{ij}(n) = \sum_{k} r_{ik}(n-1)p_{kj}$
 - Take the limit as $n \to \infty$: $\pi_j = \sum_k \pi_k p_{kj}$
 - Additional equation: $\sum_{j} \pi_{j} = 1$

Example

$$\pi_1 = 0.5\pi_1 + 0.2\pi_2$$

$$\pi_2 = 0.5\pi_1 + 0.8\pi_2$$

$$\pi_1 + \pi_2 = 1$$

Example

$$\pi_1 = 2/7$$
 $\pi_2 = 5/7$

- Assume process starts at state 1.
- $P(X_1 = 1, \text{ and } X_{100} = 1) = 2/7$
- $P(X_{100} = 1, \text{ and } X_{101} = 2) = (\frac{2}{7})(\frac{1}{2}) = 1/7$

Visit Frequency Interpretation

$$\pi_j = \sum_k \pi_k p_{kj}$$

- (Long run) frequency of being in j: π_j
- Frequency of transitions $k \to j$: $\pi_k p_{kj}$
- ullet Frequency of transitions into j : $\sum_k \pi_k p_{kj}$

Random Walk (1)

- A person walks between two (m -spaced) walls:
 - To the right with probability b
 - To the left with probability 1-b
 - Pushes against the walls with the same probabilities.

• Locally, we have:

$$i$$
 $i+1$
 $i+1$

• Balance equations: $\pi_i b = \pi_{i+1} (1-b)$

Random Walk (2)

• Justification:

$$\pi_0 = \pi_0(1 - b) + \pi_1(1 - b) \to$$

$$\pi_0 b = \pi_1(1 - b)$$

$$\pi_1 = \pi_0(b) + \pi_1(0) + \pi_2(1 - b) \to$$

$$\pi_1 b = \pi_2(1 - b)$$

Random Walk (3)

• Define:
$$\rho = \frac{b}{1-b}$$

• Then:
$$\pi_{i+1} = \pi_i \frac{b}{1-b} = \pi_i \rho$$

$$\pi_i = \pi_0 \rho^i, \quad i = 0, 1, \cdots, m$$

 \bullet To get π_0 , use: $\sum_j \pi_j = 1$

$$\pi_0 = \frac{1}{1 + \rho + \dots + \rho^m} = \frac{1 - \rho}{1 - \rho^{m+1}}$$

Birth-Death Process (1)

General (state-varying) case:

- Balance equations: $\pi_i p_i = \pi_{i+1} q_{i+1}$
- Why? (More powerful, e.g. queues, etc.)

Birth-Death Process (2)

- Special case: $p_i=p$ and $q_i=q$ for all i and, again, define $\rho=p/q$ (called "load factor").
 - Less general (but more so than the random walk).

$$\pi_{i+1} = \pi_i \frac{p}{q} = \pi_i \rho$$
 $\pi_i = \pi_0 \rho^i, \quad i = 0, 1, \dots, m$

ullet Assume p < q and $m pprox \infty$

$$\pi_0 = 1 - \rho$$

$$\mathbf{E}[X_n] = \frac{\rho}{1 - \rho}$$
 (in steady-state)