LECTURE 17

• Readings: Start Section 5.2

Lecture outline

- Review of the Bernoulli process
- Definition of the Poisson process
- Basic properties of the Poisson process
 - Distribution of the number of arrivals
 - Distribution of the interarrival time
 - Distribution of the k^{th} arrival time

The Bernoulli Process: Review

- Discrete time; success probability in each slot = p .
- PMF of number of arrivals in n time slots: <u>Binomial</u>
- PMF of interarrival time: <u>Geometric</u>
- PMF of time to k^{th} arrival: Pascal
- Memorylessness
- What about continuous arrival times?
 Example: arrival to a bank.

The Poisson Process: Definition

• Let $P(k,\tau)$ = Probability of k arrivals in an interval of duration τ .

• Assumptions:

- Number of arrivals in disjoint time intervals are independent.
- For VERY small $\,\delta\,$, we have:

$$\mathbf{P}(k,\delta) pprox \left\{ egin{array}{ll} 1 - \lambda \delta & ext{if } k = 0 \\ \lambda \delta & ext{if } k = 1 \\ 0 & ext{if } k > 0 \end{array}
ight.$$

 $-\lambda$ = "arrival rate" of the process.

From Bernoulli to Poisson (1)

- **Bernoulli:** Arrival prob. in each time slot = p
- **Poisson:** Arrival probability in each δ -interval = $\lambda\delta$
- Let $n=t/\delta$ and $p=\lambda\delta$:

Number of arrivals in a
$$t$$
 -interval

Number of successes in n time slots

(Binomial)

From Bernoulli to Poisson (2)

• Number of arrivals in a t-interval as $n \to \infty$ =

PMF of Number of Arrivals

ullet N : number of arrivals in a au -interval, thus:

•
$$\mathbf{P}(N=k)=\mathbf{P}(k,\tau)=\ \frac{(\lambda\tau)^k e^{-\lambda\tau}}{k!}$$
 (Poisson) $k=0,1,\cdots$

- Mean: $E[N] = \lambda \tau$
- Variance: $Var(N) = \lambda \tau$
- Transform: $M_N(s) = e^{\lambda \tau(e^s-1)}$

Email Example

• You get email according to a Poisson process, at a rate of $\lambda = 0.4$ messages per hour. You check your email every thirty minutes.

- Prob. of no new messages =
$$\frac{(.2)^0 e^{-.2}}{0!} = e^{-.2}$$

- Prob. of one new message =
$$\frac{(.2)^1 e^{-.2}}{1!} = .2e^{-.2}$$

Interarrival Time

- Y_1 : time of the 1st arrival.
- "First order" interarrival time:

$$f_{Y_1}(y) = \lambda e^{-\lambda y}, \quad y \ge 0$$
 (Exponential)

• Why:

$$P(Y_1 \le y) = 1 - P(0, y) = 1 - e^{-\lambda y}$$

Interarrival Time

- Fresh Start Property: The time of the next arrival is independent from the past.
- **Memoryless property**: Suppose we observe the process for T seconds and no success occurred. Then the density of the remaining time for arrival is exponential.
- **Email Example**: You start checking your email. How long will you wait, in average, until you receive your next email? $\mathbf{E}[Y_1] = \frac{1}{\lambda} = 2.5$ hours

Time of k^{th} Arrival

• Y_k : time of the k^{th} arrival.

- $T_k = Y_k Y_{k-1} \ k = 2, 3, ...$: kth interarrival time
- It follows that:

$$Y_k = T_1 + T_2 + \dots T_k$$

Time of k^{th} Arrival

• Y_k : time of the k^{th} arrival.

•
$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$
, $y \ge 0$ (Erlang) "of order k "

Bernoulli vs. Poisson

	Bernoulli	Poisson
Times of Arrival	Discrete	Continuous
Arrival Rate	p /per trial	λ /unit time
PMF of Number of Arrivals	Binomial	Poisson
PMF of Interarrival Time	Geometric	Exponential
PMF of k^{th} Arrival Time	Pascal	Erlang