LECTURE 16

• Readings: Section 5.1

Lecture outline

- Random processes
- Definition of the Bernoulli process
- Basic properties of the Bernoulli process
 - Number of successes
 - Distribution of interarrival times
 - The time of the k^{th} success

Random Processes: Motivation

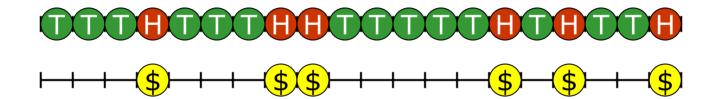
• Sequence of random variables: X_1, X_2, \cdots

Examples:

- Arrival example: Arrival of people to a bank.
- Queuing example: Length of a line at a bank.
- <u>Gambler's ruin</u>: The probability of an outcome is a function of the probability of other outcomes (Markov Chains).
- Engineering example: Signal corrupted with noise.

The Bernoulli Process

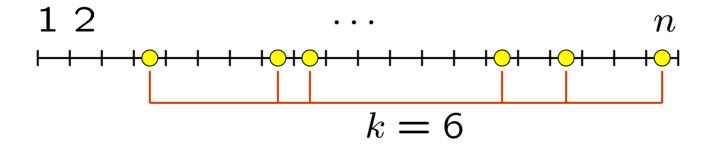
- A sequence of independent Bernoulli trials.
- At each trial:
 - P(success) = P(X = 1) = p
 - P(failure) = P(X = 0) = 1 p



• Examples:

- Sequence of ups and downs of the Dow Jones.
- Sequence of lottery wins/losses.
- Arrivals (each second) to a bank.

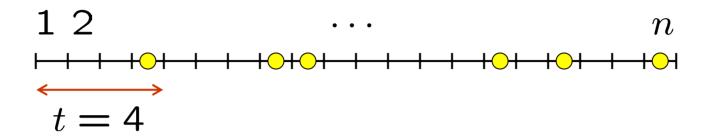
Number of successes S in n time slots



•
$$\mathbf{P}(S=k)=\binom{n}{k}p^k(1-p)^{n-k},$$
 (Binomial)
$$k=0,1,\cdots,n$$

- Mean: E[S] = np
- Variance: Var(S) = np(1-p)

Interarrival Times



ullet T_1 : number of trials until first success (inclusive).

•
$$P(T_1 = t) = p(1-p)^{t-1}$$
, (Geometric)
 $t = 1, 2, \cdots$

Memoryless property.

• Mean:
$$\mathrm{E}[T_1] = \frac{1}{p}$$

• Variance: $\mathrm{Var}(T_1) = \frac{1-p}{p^2}$

Fresh Start and Memoryless Properties

Fresh Start

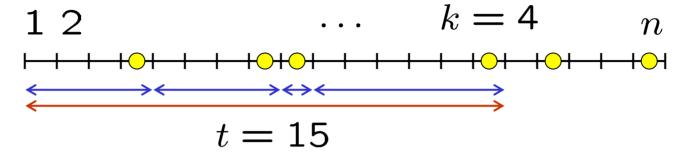
Given n, the future sequence X_{n+1}, X_{n+2}, \ldots is a also a Bernoull process and is independent of the past.

Memorylessness

Suppose we observe the process for n times and no success occurred. Then the pmf of the remaining time for arrival is geometric.

$$P(T - n = k | T > n) = p(1 - p)^{k-1}$$

Time of the k^{th} Arrival



- Y_k : number of trials until k^{th} success (inclusive).
- $T_k = Y_k Y_{k-1}$ $k = 2, 3, \ldots$: kth interarrival time
- It follows that:

$$Y_k = T_1 + T_2 + \dots T_k$$

Time of the k^{th} Arrival

- Y_k : number of trials until k^{th} success (inclusive).
- Mean: $\mathrm{E}[Y_k] = \frac{k}{p}$
- Variance: $Var(Y_k) = \frac{k(1-p)}{p^2}$

•
$$P(Y_k=t)={t-1 \choose k-1}p^k(1-p)^{t-k},$$
 (Pascal) $t=k,k+1,\cdots$