LECTURE 15

• Readings: Sections 7.1-7.3

Lecture outline

- Limit theorems:
 - Chebyshev inequality
 - Convergence in probability

Motivation

$$X_1,\cdots,X_n$$
 i.i.d.,
$$M_n=\frac{X_1+\cdots+X_n}{n} \quad \text{(sample mean)}$$
 What happens as $n\longrightarrow\infty$?

- Why bother?
- A tool: Chebyshev's inequality.
- Convergence "in probability".
- ullet Convergence of M_n .

Chebyshev's Inequality

Random variable X:

$$\sigma^2 = \int (x - \mathbf{E}[X])^2 f_X(x) dx$$

$$\sigma^2 \geq c^2 \mathbf{P}(|X - \mathbf{E}[X]| \geq c)$$

$$|\mathbf{P}(|X - \mathbf{E}[X]| \ge c) \le \frac{\sigma^2}{c^2}$$

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge k\sigma) \le \frac{1}{k^2}$$

Deterministic Limits: Review

- We have a: Sequence: a_n
 - Number: a
- ullet We say that a_n converges to a ,

and write:

$$\lim_{n\to\infty} a_n = a$$

• If (intuitively):

" a_n eventually gets and stays (arbitrarily) close to a".

• If (rigorously):

For every $\epsilon>0$ there exists n_0 , such that for all $n\geq n_0$, we have: $|a_n-a|\leq \epsilon$

Convergence "in probability"

- ullet We have a sequence of random variables: Y_n
- ullet We say that Y_n converges to a number a:
- If (intuitively):

" (Almost) all of the PMF/PDF of Y_n eventually gets concentrated (arbitrarily) close to a ".

• If (rigorously):

For every $\,\epsilon>0\,$, we have:

$$\lim_{n\to\infty} \mathbf{P}(|Y_n-a|\geq \epsilon)=0$$

Example

 Consider a sequence of random variables with the following sequence of PMFs:

• Does Y_n converge?

$$\lim_{n\to\infty} \mathbf{P}(|Y_n - 0| \ge \epsilon) = \lim_{n\to\infty} \frac{1}{n} = 0$$

• What is $E[Y_n]$?

Convergence of the Sample Mean

 X_1, \cdots, X_n i.i.d., (finite mean μ and variance σ^2)

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

• Mean: $E[M_n] = \mu$ • Variance: $Var(M_n) = \frac{\sigma^2}{n}$

• Chebyshev: $P(|M_n - E[M_n]| \ge \epsilon) \le \frac{Var(M_n)}{2}$

• Limit:

$$\mathbf{P}(|M_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

The Pollster's Problem

- ullet f: fraction of population that do ".....".
- i^{th} person polled: $X_i = \begin{cases} 1 & \text{If "Yes".} \\ 0 & \text{If "No".} \end{cases}$
- $M_n = \frac{X_1 + \dots + X_n}{n}$: fraction of "Yes" in our sample.
- Suppose we want: $P(|M_n f| \ge .01) \le .05$
- Chebyshev: $\mathbf{P}(|M_n \mu_x| \ge \epsilon) \le \frac{\sigma_x^2}{n\epsilon^2}$
 - But we have : $\mu_x = f$ $\sigma_x^2 = f(1-f) \le \frac{1}{4}$
- Thus: $P(|M_n f| \ge .01) \le \frac{1}{.0004n}$
- So, let n > 50,000 (conservative).

Die Experiment (1)

- ullet Unfair die, with probability of face $i = p_i$.
- Independent throws: $Z_n = \text{Value of } n^{\text{th}}$ throw. Thus, Z_n are i.i.d. with PMF:

- Define: $X_n = \begin{cases} 1 & \text{If } Z_n = i. \\ 0 & \text{Otherwise.} \end{cases}$
- Let: $M_n = \frac{X_1 + \dots + X_n}{n}$ "frequency of face i"

Die Experiment (2)

ullet X_n is Bernoulli with probability p_i , thus:

$$\mu_x = p_i \qquad \sigma_x^2 = p_i (1 - p_i) \le \frac{1}{4}$$

Then:
$$\mathbf{E}[M_n] = p_i$$
 $Var(M_n) = \frac{\sigma_x^2}{n} \le \frac{1}{4n}$

- Chebyshev: $P(|M_n p_i| \ge \epsilon) \le \frac{1}{4n\epsilon^2}$
- It follows that: $\lim_{n\to\infty} \mathbf{P}(|M_n p_i| \ge \epsilon) = 0$
- Therefore, the sample frequency of each face converges "in probability" to the probability of that face.
- This allows us to do "simulations".