LECTURE 10

Readings: Section 3.6

Lecture outline

- More on continuous r.v.s
- Derived distributions

Review

Discrete Continuous

$$p_X(x) f_X(x)$$

$$p_{X,Y}(x,y) f_{X,Y}(x,y)$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$p_X(x) = \sum_y p_{X,Y}(x,y) f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$F_X(x) = \mathbf{P}(X \le x)$$

E[X], var(X)

Conditioning "slices" the joint PDF

Recall the stick-breaking example:

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} rac{1}{\ell x} & 0 \leq y < x \leq \ell \\ \text{otherwise.} \end{array}
ight.$$
Pictorially:
 $f_{Y,Y}(x,y) = y$

• Pictorially:

Buffon's Needle (1)

- Parallel lines at distance dNeedle of length ℓ (assume $\ell < d$)
- Find P(needle intersects one of the lines).

- Midpoint-nearest line distance: $X \in [0, d/2]$
- Needle-lines acute angle: $\Theta \in [0, \pi/2]$

Buffon's Needle (2)

• Model: X, Θ uniform and independent.

$$f_{X,\Theta}(x,\theta) = f_X(x) \cdot f_{\Theta}(\theta)$$
$$= \frac{2}{d} \cdot \frac{4}{\pi} \quad 0 \le x \le d/2, \ 0 \le \theta \le \pi/2$$

When does the needle intersect a line?

If
$$X \leq \frac{\ell}{2} \sin \Theta$$

Buffon's Needle (3)

$$P\left(X \le \frac{\ell}{2}\sin\Theta\right) = \int \int_{x \le \frac{\ell}{2}\sin\theta} f_X(x) f_{\Theta}(\theta) \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \int_0^{(\ell/2)\sin\theta} \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \frac{\ell}{2}\sin\theta \, d\theta = \frac{2\ell}{\pi d}$$

What is a derived distribution?

- It is a PMF or PDF of a function of random variables with known probability law.
- Example: X and Y

- Let: g(X,Y) = Y/X. Note: g(X,Y) is a r.v.
- Obtaining the PDF for g(X,Y) involves deriving a distribution.

Why do we derive distributions?

- Sometimes we don't need to. Example:
 - Computing expected values.

$$\mathbf{E}[g(X,Y)] = \iint g(x,y) f_{X,Y}(x,y) dx dy$$

- But often they're useful. Examples:
 - Maximum of several r.v.s. (delay models)
 - Minimum of several r.v.s (failure models).
 - Sum of several r.v.s. (multiple arrivals)

How to find them: Discrete Case

- Consider:
- a single discrete r.v.: X
- and a function: g(X) = Y

• Obtain probability mass for each possible value of Y=y:

$$p_Y(y) = P(g(X) = y)$$

$$= \sum_{x: g(x)=y} p_X(x)$$

How to find them: Continuous Case

- Consider: a single continuous r.v.: X
 - and a function: g(X) = Y
- Two step procedure:
 - 1. Get CDF of Y: $F_Y(y) = P(Y \le y)$
 - 2. Differentiate to get: $f_Y(y) = \frac{dF_Y}{dy}(y)$
- Why go to the CDF?

Example 1

- *X*: uniform on [0, 2]
- Find PDF of $Y = X^3$
- Solution:
 - 1. Get the CDF:

$$F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X^3 \le y)$$

= $\mathbf{P}(X \le y^{1/3}) = \frac{1}{2}y^{1/3}$

2. Differentiate:

$$f_Y(y) = \frac{dF_Y}{dy}(y) = \frac{1}{6y^{2/3}}$$

Example 2

- Joan is driving from Boston to New York. Her speed is uniformly distributed between 30 and 60 mph. What is the distribution of the duration of the trip?
- PDF of the velocity V:

- Let: T(V) =
 Find $f_T(t)$.

The PDF of Y = aX + b.

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

• Use this to check that if X is normal, then Y = aX + b is also normal.