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Solutions to Quiz 1: Spring 2006 

Problem 1: 
Each of the following statements is either True or False. There will be no partial credit given for 
the True False questions, thus any explanations will not be graded. Please clearly indicate True 
or False in your quiz booklet, ambiguous marks will receive zero credit. 

Consider a probabilistic model with a sample space Ω, a collection of events that are subsets of Ω, 
and a probability law P() defined on the collection of events—all exactly as usual. Let A, B and 
C be events. 

(a) If P(A) ≤ P(B), then A ⊆ B. True False 

False. As a counterexample, consider the sample space associated with a biased coin which 
comes up heads with probability 1 

3 . Then, P(heads) ≤ P(tails), but the event heads is clearly 
not a subset of the event tails. Note that the converse statement is true, i.e. if A ⊆ B, then 
P(A) ≤ P(B). 

(b) Assuming P(B) > 0, P(A | B) is at least as large as P(A). True False 

False. As a counterexample, consider the case where A = BC and 0 < P(B) < 1. Clearly 
P(A B) = 0, but P(A) = 1 − P(B) > 0. So, in this case P(A B) < P(A).| | 

Now let X and Y be random variables defined on the same probability space Ω as above. 

(c) If E[X ] > E[Y ], then E[X2] ≥ E[Y 2]. True False 

False. Let X take on the values 0 and 1 with equal probability. Let Y take on the values 
−1000 and 1000 with equal probability. Then, E[X] = .5, and E[Y ] = 0, so E[X] > E[Y ]. 
However, E[X 2] = .5, while E[Y 2] = 1000000. Thus, E[X2] < E[Y 2] in this case. An 
additional counterexample using degenerate random variables is the trivial case of X = −1, 
Y = −2. 

(d) Suppose P(A) > 0. Then E[X] = E[X | A] + E[X AC ]. True False |
False. This resembles the total expectation theorem, but the P(A) and P(AC ) terms are 
missing. As an explicit counterexample, say X is independent of A, and E[X] = 1. Then, 
the left­hand side is 1, while the right­hand side of the equation is 1 + 1 = 2. 

(e) If X and Y are independent and P(C) > 0, 
then pX,Y C (x, y) = pX C (x) pY C (y). True False | | |

False. If X and Y are independent, we can conclude pX,Y (x, y) = pX (x) pY (y). The statement 
asks whether X and Y are conditionally independent given C. As we have seen in class, 
independence does NOT imply conditional independence. For example, let X take on the 
values 0 and 1 with equal probability. Let Y also take on the values 0 and 1 with equal 
probability, independent of X. Let C be the event X + Y = 1. Then, clearly X and Y are not 
independent conditioned on C. To see this, note that the joint PMF of X and Y conditioned 

1on C puts probability 4 on each of the outcomes (0, 1) and (1, 0). Thus, conditioned on C, 
telling you the value of X determines the value of Y exactly. On the other hand, conditioned 
on C, if you don’t know the value of X, Y is still equally likely to be 0 or 1. 
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(f) If for some constant c we have P({X > c}) = 1 
2 , then E[X] > c . True False 2 

False. Let X take on the values −1 and 1 with equal probability. Then, P({X > 0}) = .5, 
and E[X] = 0 >� 1 . Incidentally, if we restrict X to be nonnegative, the statement is true. 4 
We will study this more carefully later in the term. The interested reader can look up the 
Markov inequality in section 7.1 of the textbook. 

In a simple game involving flips of a fair coin, you win a dollar every time you get a head. Suppose 
that the maximum number of flips is 10, however, the game terminates as soon as you get a tail. 

(g) The expected gain from this game is 1.	 True False 

False. Consider an alternative game where you continue flipping until you see a tail, i.e. the 
game does not terminate at a max of 10 flips. We’ll refer to this as the unlimited game. 
Let G be your gain, and X be the total number of flips (head and tails). Realize that X is 
a geometric random variable, and G = X − 1 is a shifted geometric random variable. Also 
E[G] = E[X] −1 = 2 −1 = $1, which is the value of the unlimited game. The truncated game 
effectively scales down all pay­offs of the unlimited game which are > $10. Thus the truncated 
game must have a lower expected value than than the unlimited game. The expected gain of 
the truncated game is 1023 

1024 ≈ .99902 < 1. 

Let X be a uniformly distributed continuous random variable over some interval [a, b]. 

(h) We can uniquely describe fX (x) from its mean and variance. True False 

True. A uniformly distributed continuous random variable is completely specified by it’s 
(b−a)2 

range, i.e. by a and b. We have E[X] = (a+b) , and var(X) = , thus given E[X] and2	 12 
var(X) one can solve for a and b. 

Let X be an exponentially distributed random variable with a probability density function fX (x) = 
e−x . 

(i) Then P ({0 ≤ X ≤ 3} ∪ {2 ≤ X ≤ 4}) = 1 − e−4	 True False 

True. Note {0 ≤ X ≤ 3} ∪ {2 ≤ X ≤ 4} = {0 ≤ X ≤ 4}, so we have P ({0 ≤ X ≤ 4}) = 
FX (4) = 1 − e−4 

Let X be a normal random variable with mean 1 and variance 4. Let Y be a normal random 
variable with mean 1 and variance 1. 

(j)	 P(X < 0) < P(Y < 0). True False 

False. Since X ∼ N(1, 4), X−1 ∼ N(0, 1). Similarly, Y − 1 ∼ N(0, 1). So, P(X < 0) = 2 
Φ( 0−1 ), and P(Y < 0) = Φ(0 − 1). We know that any CDF is monotonically nondecreasing, 2 

1so Φ(−2 ) ≥ Φ(−1). This shows that the statement in false. 

An alternative solution: 
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False. Since X ∼ N(1, 4), X −1 ∼ N(0, 1). Similarly, Y − 1 ∼ N(0, 1). Let Z be a standard 2 
normal random variable. Then, P(X < 0) = P(Z < 0−1 ), and P(Y < 0) = P(Z < 0 − 1).2 

1Now, the event {Z < −1} is a subset of the event {Z < − 2 }, and hence P(Z < −1) ≤ P(Z < 
− 2 ), which implies that the statement in false. 
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Problem 2: (40 points) 
Borders Book store has been in business for 10 years, and over that period, the store has collected 
transaction data on all of its customers. Various marketing teams have been busy using the data 
to classify customers in hopes of better understanding customer spending habits. 

Marketing Team A has determined that out of their customers, 1/4 are low frequency buyers 
(i.e., they don’t come to the store very often). They have also found that out of the low frequency 
buyers, 1/3 are high spenders (i.e., they spend a significant amount of money in the store), whereas 
out of the high frequency buyers only 1/10 are high spenders. Assume each customer is either a low 
or high frequency buyer. 

(a) Compute the probability that a randomly chosen customer is a high spender. 

We use the abbreviations HF, LF, HS, and LS to refer to high frequency, low frequency, high 
spender, and low spender. Using the total probability theorem, 

P(HS) = P(LF )P(HS | LF ) + P(HF )P(HS HF )|
1 1 3 1 

= +
4 
· 
3 4 

· 
10 

19 
= 

120 
≈ .1583 

(b) Compute the probability that a randomly chosen customer is a high frequency buyer given 
that he/she is a low spender. 

Using Bayes’ rule, 

P(HF | LS) = 
P(HF )P(LS | HF ) 

P(HF )P(LS | HF ) + P(LF )P(LS LF )|
3 9 

= 4 10· 
3 9 + 1 2 
4 10 4 3· · 
81 

= 
101 

≈ .8020 

You are told that the only products Borders sells are books, CDs, and DVDs. You are in­
troduced to Marketing Team B which has identified 3 customer groupings. These groups are 
collectively exhaustive and mutually exclusive. They have also determined that each customer is 
equally likely to be in any group, customers are i.i.d, and each customer buys only one item per 
day. They refer to the groupings as C1, C2, and C3, and have determined the following conditional 
probabilities: 

P(purchases a book | customer in C1) = 1/2 

P(purchases a CD | customer in C1) = 1/4 

P(purchases a DVD | customer in C1) = 1/4 

P(purchases a book | customer in C2) = 1/2 

P(purchases a CD | customer in C2) = 0 

P(purchases a DVD | customer in C2) = 1/2 

P(purchases a book | customer in C3) = 1/3 

P(purchases a CD | customer in C3) = 1/3 

P(purchases a DVD | customer in C3) = 1/3 
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(c) Compute the probability that a customer purchases a book or a CD. 

We use the abbreviations B,C,D for buying a book, CD, or DVD. P(B∪ C) = P(B) + P(C) 
because a customer can only buy 1 item, and hence B and C are disjoint. Applying the total 
probability theorem, 

P(B) = P(C1)P(B C1) + P(C2)P(B | C2) + P(C3)P(B| | C3) 
1 1 1 1 1 1 

= + +
3 
· 
2 3 

· 
2 3 

· 
3 

4 
=

9 
≈ 0.4444 

Similarly, 

P(C) = P(C1)P(C C1) + P(C2)P(C | C2) + P(C3)P(C | C3) 
1 1 1 

| 
1 1 

= + 0 + 
3 
· 
4 3 

· 
3 
· 
3 

7 
= 

36 
≈ 0.1944 

So, P(B ∪ C) = 4 + 7 = 23 ≈ .639. (Note: Alternatively, we could have used the fact that 9 36 36 
B and C are conditionally disjoint given C1, C2, or C3. Then, we could just add together the 
conditional probabilities. This would give the formula P(B ∪ C) = 1

4 ) + 1 2 + 0) + 3 · ( 
1 + 1 3 · ( 

1 
2 

1 + 1 · ( 1 3 ).)3 3 

(d) Compute the probability that a customer is in group C2 or C3 given he/she purchased a book. 

We use Bayes’ rule. 

P(C2 ∪ C3 | B) = 
P(B ∩ (C2 ∪ C3)) 

P(B) 
P(B ∩ C2) + P(B ∩ C3)= 

P(B ∩ C1) + P(B ∩ C2) + P(B ∩ C3) 
. 

To get the second line, we used the fact that C1, C2, and C3 are mutually disjoint and 
collectively exhaustive. Now, substituting the given numbers, 

1 1 + 1 1 
3 2 3 3P(C2 ∪ C3 | B) = 
· · 

1 1 + 1 1 + 1 1 
3 2 3 2 3 3· · · 
5 

= = .625
8 

Now in addition to the data from Marketing Team B, you are told that each book costs $15, 
each CD costs $10, and each DVD costs $15. 

(e) Compute the PMF, expected value and variance of the revenue (in dollars) Borders collects 
from a single item purchase of one customer? 

Let R be the revenue from one customer. Then, R can take on the values 10 and 15. pR(10) = 
7 29P(C). We calculated P(C) = in part 2c). pR(15) = 1 − pR(10) = because the PMF 36 36 

must sum to 1. So, 
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pR(r) = 

⎧ ⎪⎨ ⎪⎩ 

7 r = 10 36 
29 r = 15 36 
0 otherwise 

Once we have the PMF, calculated the mean and variance is a simply a matter of plugging 
7 29 = 505into the definitions. E[R] rpR(r) = 10 · + 15 · ≈ 14.03.= 36 36 36 

Since we know the mean, we can calculate the variance from var(R) = E[R2] − (E[R])2 = 

36 − ( 505 5075 102 7 + 152 29 
36 )

2 = 1296 ≈ 3.9159.36· · 

(f) Suppose that n customers shop on a given day. Compute the expected value and variance of 
the revenue Borders makes from these n customers. 

be random variables such that Ri 
ntotal revenue is R = i=1 Ri. Recall that the customers are i.i.d. Thus, by linearity of 

= 505n 

Let R1, R2, . . . , R is the revenue from customer i. Then 

expectation E[R] E[Ri] = nE[R1] using the result from (2e). Because the Ri 
n= i=1 36 

n 
i=1 var(Ri) = nvar(R1) = 5075n 

1296 , using the result are assumed to be independent, var(R) =

from (2e). 

The following 2 questions are required for 6.431 Students 
(6.041 Students may attempt them for Extra Credit) 
Skipper is very abnormal, not that there’s anything wrong with that. He doesn’t fit into any of the 
marketing teams’ models. Every day Skipper wakes up and walks to Borders Bookstore. There he 
flips a fair coin repeatedly until he flips his second tails. He then goes to the counter and buys 1 
DVD for each head he flipped. Let R be the revenue Borders makes from Skipper each day. 

(g) What’s the daily expected revenue from Skipper? 

The crucial observation is that Skipper’s revenue can be broken down as the sum of two 
independent shifted geometric random variables. Let X1 and X2 be 2 independent geometric 

1random variables with paramater p = 2 . Let R be the total daily revenue from Skipper. We 
find R = 15(X1 − 1) + 15(X2 − 1), and thus E[R] = 15(E[X1] + E[X2]) − 30 = $30, where 

= 152(var(X1) + var(X2))1 
1 . 
1− 

)2 . 

we’ve used E[Xi] Likewise we find var(R) $900, where
= = 

we’ve used var(Xi) = 
( 1 

2 

2 
1 
2 
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Problem 3: (30 points)

We have s urns and n balls, where n ≥ s. Consider an experiment where each ball is placed in an

urn at random (i.e., each ball has equal probability of being placed in any of the urns). Assume

each ball placement is independent of other placements, and each urn can fit any number of balls.

Define the following random variables:


For each i = 1, 2, . . . , s, let Xi be the number of balls in urn i. 
For each k = 0, 1, . . . , n, let Yk be the number of urns that have exactly k balls. 

Note: Be sure to include ranges of variables where appropriate. 

(a) Are the Xi’s independent? Answer: Yes / No 

No. Beforehand, X1 can take on any value from 0, 1, . . . , n. Say we are told X2 = X3 = . . . = 
Xs = 0. Then, conditioned on this information, X1 = n with probability 1. Thus, the Xi’s 
cannot be independent. 

(b) Find the PMF, mean, and variance of Xi.

pXi (k) =

E[Xi] =

var(Xi) =


The crucial observation is that Xi has a binomial PMF. Consider each ball. It chooses an urn 
independently and uniformly. Thus, the probability the ball lands in urn i is 1 . There are n s 

1balls, so Xi is distributed like a binomial random variable with parameters n and s . Thus, 
we obtain 

n 1 
�k � 

1 n−k 

pXi (k) = 1 − , k = 0, 1, . . . , n 
k s s 

n
E[Xi] = 

s � �� � � �� �
1 1 n 1

var(Xi) = n · 1 − = 1 −
s s s s 

(c) For this question let n = 10, and s = 3. Find the probability that the first urn has 3 balls, 
the second has 2, and the third has 5. i.e. compute P(X1 = 3, X2 = 2, X3 = 5) = 

We can calculate the required probability using counting. As our sample space, we will use 
sequences of length n, where each the ith element in the sequence is the number of the urn 

n = 310that the ith ball is in. The total number of elements in the sample space is s . The 
sequences that have X1 = 3, X2 = 2, and X3 = 5 are those sequences that have three 1’s, two 

102’s, and five 3’s. The number of such sequences is given be the partition formula, 3,2,5 . So, 

3,2,5) = 280 P(X1 = 3, X2 = 2, X3 = 5) = 
( 10 

310 6561 ≈ .0427. 

(d) Compute E[Yk ].

E[Yk ] =


This problem is very similar to the hat problem discussed in lecture. The trick is to define indi­
cator random variables I1, I2, . . . , Is. Ii is 1 if urn i has exactly k balls, and 0 otherwise. With 

s sthis definition, Yk = By linearity of expectation, we see that E[Yk ] = E[Ii].i=1 Ii. i=1 
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To calculate E[Ii], note that E[Ii] = P(Xi = k) = pXi (k). From 3b), we know that pXi (k) = � � � �k � 
n	 1 1 n 1 1 
k	 s 1 − s

n−k 
. This means E[Yk ] = s · 

� 
k 

� � 

s 

�k � 
1 − s

n−k 
. 

(e) Compute var(Yk ). You may assume n ≥ 2k. 
var(Yk ) = 

var(Yk ) = E[Y 2] − (E[Yk ])2 . From 3d), we know E[Yk ], so we only need to find E[Yk 
2].�k 

sE[Y 2] = E[( i=1 Ii)
2]. Using linearity of expectation, and noting that I2 = Ii since Ii isk	 � � � i 

s s salways 0 or 1, we obtain E[Y 2] = E[Ii] + 2 i=1 j=i E[IiIj ]. From 3d), we know E[Ii],k i=1 
which takes care of the first term. 

To calculate the second term, E[IiIj ] = P(Xi = Xj = k). Note that this event only has

nonzero probability if 2k ≤ n (hence the assumption in the problem statement). Now,

P(Xi = Xj = k) can be computed using the partition formula. The probability that the

first k balls land in urn i, the next k balls land in urn j, and the remaining n − 2k balls
� �k � �k � �

2land in urns not equal to i or j is given by s 
1 1 1 − s

n−2k 
. The number of ways s 

nof partitioning the n balls into groups of size k, k, and n − 2k is k,k,n−2k . This gives 
n 1 2P(Xi = Xj = k) = 

� 
k,k,n−2k 

� � 

s 

�2k � 
1 − s 

�n−2k 
. 

Finally, substituting our results into the original equation, we get 

s s−1 s

var(Yk ) = E[Ii] + 2 E[IiIj ] − (E[Yk ])2


i=1 i=1 j=i+1


n 1 
�k � 

1 n−k 
� 

n 
��

1 
�2k � 

2 n−2k 

=	 1 − + s(s− 1) 
k, k, n− 2k 

1 −s · 
k s s	 s s 

n 1 
�k � 

1 n−k 
�2 

s ·− 
k s 

1 − 
s 

(f)	 This problem is required for 6.431 Students 
(6.041 Students may attempt it for Extra Credit) 
What is the probability that no urn is empty? i.e., compute P (X1 > 0, X2 > 0, . . . , Xs > 0).

P(X1 > 0, X2 > 0, . . . , Xs > 0) =


To determine the desired probability, we will compute 1 − P(some urn is empty). Define

events Ai, i = 1, 2, . . . , s such that Ai is the event {Xi = 0}, i.e. that urn i is empty. Then,

P(some urn is empty) = P(A1 ∪ A2 . . . ∪ As). We will use the inclusion­exclusion principle

to calculate the probability of the union of the Ai (see chapter 1, problem 9 for a detailed

discussion of the inclusion­exclusion principle).


The inclusion­exclusion formula states 
s

P(A1∪A2 . . .∪As) = P(Ai)− P(Ai∩Aj )+ P(Ai∩Aj ∩Ak )+. . .+(−1)s−1P(A1∩A2 . . .∩As) 
i=1 1≤i<j≤s 1≤i<j<k≤s 

Let us calculate P(A1 ∩ A2 . . . ∩ Ak ) for any k ≤ s. This intersection represents the event 
that the first k urns are all empty. The probability the first k urns are empty is simply the 
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n
kprobability that every ball misses these k urns, which is 1 − s . By symmetry, this formula 

works for any fixed set of k urns. Plugging this into the inclusion­exclusion formula, we get 

s n � 2 n � n n� 1
P(A1∪A2 . . .∪As) = 1 − 

s 
− 1 − 

s 
+ 1 − 

3 
. . .+(−1)s−1 1 − 

s
. 

s s 
i=1 1≤i<j≤s 1≤i<j<k≤s 

To simplify this expression, consider the first sum. There are s terms in the sum, so the first � �n � � � �
1 s ssum is just s 1 − s . In the next sum, there are 2 terms. In general, the kth sum has k 

terms. Thus, we get � � �� � � �� � � �� � �n n nn s 2 s 3 s
P(A1∪A2 . . .∪As) = s 1 − 

1 
. . .+ (−1)s−1 1 − 

s
. 

s 
− 

2
1 − 

s 
+

3 
1 − 

s s s 

We subtract this probability from 1 to get the final answer, 

P(X1 > 0, X2 > 0, . . . , Xs > 0) � � � � �� � � �� � � � � � � 
n n nn s 2 s 3 s 

= 1 − s 1 − 
1

+ . . . + (−1)s−1 1 − 
s 

s 
− 

2
1 − 

s 
+

3 
1 − 

s s s 

= 
s−1

(−1)k 

� 
s 
�� 

1 − 
k n


k s 
k=0 

(We can leave out the k = s term since that term is always 0.) 


