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Solutions to Final Exam: Spring 2006

Problem 1

(42 points, Each question is equally weighted at 3.5 points each)

Multiple Choice Questions: There is only one correct answer for each question listed below, please
clearly indicate the correct answer.

(1) [D]

Alice’s and Bob’s choices of number can be illustrated in the following figure. Event A (the absolute
difference of the two numbers is greater than %) corresponds to the area shaded by the vertical line.
Event B (Alice’s number is greater than %) corresponds to the area shaded by the horizontal line.
There fore, event ANB corresponds to the double shaded area. Since both choices is uniformly
distributed between 0 and 2, we have that

Double shaded area

P(ANnB) =
( ) Total shaded area
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Let B be the first ball and B be the second ball (you may do this by drawing two balls with both
hands, then first look at the ball in left hand and then look at the ball in right hand).

P( B; and By are of different color )

= P(B is red )P( By is white | By is red ) + P( B; is white )P( By is red | By is white )
m n n m

X X
m+n m+n—1 m+n m+n-—1
2mn

(m+n)(m+n-—1)

(3)

Without any constraint, there are totally 20 x 19 x 18 x 17 possible ways to get 4 pebbles out of 20.
Now we consider the case under the constraint that the 4 picked pebbles are on different rows. As
illustrated by the following figure, there are 20 possible positions for the first pebble, 15 for the
second, 10 for the third and finally 5 for the last pebble. Therefore, there are a total of

20 x 15 x 10 x 5 possible ways. With the uniform discrete probability law, the probability of picking
4 pebbles from different rows is

20x15x10x5  5%-41.16!
20! - ’

2 20!
Rowlﬂ: . . .

(4)

Let X4 and Xp denote the the life time of bulb A and bulb B, respectively. Clearly, X 4 has
exponential distribution with parameter A\q = % and X p has exponential distribution with parameter
Ap = %. Let E be the event that we have selected bulb A. We use X to denote the lifetime of the
selected bulb. Using Bayes’ rule, we have that

1 PE) - P(X>1|E
2 P(X > 1)
e
= oo
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1
E—
1+ e24

(5) [C]

We define the following events:

D A person has the disease,

D¢ A person doesn’t have the disease,
T A person is tested positive,

T¢ A person is tested negative.

We know that P(D) = 0.001, P(T'| D) = 0.95, P(T°| D) = 0.95. Therefore, using the Bayes’ rule,
we have
P(D) - P(T'|D)
P(T)
0.001 - 0.95

0.001-0.95+ 0.999 - 0.05
= 0.0187.

P(D|T)

(6) [D]

Fy(y) = P(

Take derivative on both side of the equation, we have that fy(y) = 5 fx(§ 4 2). Therefore,
fr(0)=3fx(2)=e"

(7) [B]

Clearly, X is exponentially distributed with parameter A = 3. Therefore, its transform is
Mx (s) = 32~. The transform of Y can be easily calculated from its PMF as My (s) = 1e® + 1. Since
X and Y are independent, transform of the X+4Y is just the product of the transform of X and the

transform of Y. Thus,

Mz(s)ly = Mx(s)lomy - My (s)],y
3 /1 1
- 2(z+f>

= Z(l%—e).
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(8)
Let P be the random variable for the value drawn according to the uniform distribution in interval
[0,1] and let X be the number of successes in k trials. Given P = p, X is a binomial random variable:

G —pFr 2 =0,1,..,k
pX|P(x|p) B { 0 otherwise.

From the properties of a binomial r.v. we know that E[X|P = p|] = kp, and var(X|P = p) = kp(1 —p).

Now let’s find var(X) using the law of total variance:

var(X) = E[var(X|P)| + var(E[X|P])
= E[kP(1— P)] + var(kP)
= k(E[P] — E[P?]) + k*var(P)
1 1 9 1
= k[i—(ﬁ—i-lél)]%—k D
kLR
6 12
Therefore the variance is: var(X) = E[X?] — E[X]? = % + %

(9)

Let X be the car speed and let Y be the radar’s measurement. Then, the joint PDF of X and Y is
uniform in the range of pairs (x, y ) such that x € [60,75] and = < y < z + 5. Therefore, the least
square estimator of X given Y = y is

i1y+30 60<y<65,
EX|Y=y] = y—25 if65<y<T75, (1)
ly+35 if 75 <y < 80.

Thus, the LSE of X when Y =76 is E[ X | Y = 76] = 1 x 76 4 35 = 73.

(10)

The mosquito’s arrivals form a Bernoulli process with parameter p. Since the expected time till the

first bite is 10 seconds, the parameter p is equal to %. The time when you die is the time when the

second mosquito arrives, which is the second arrival time of the mosquito arrival process, denoted as
T5. Ty’s PMF is the order 2 Pascal. Thus, the probability that you die at time 10 seconds is

Pr,(10) = Pr(t)|=10
- (32 )ra-ar

_ [ 10-1 iQ(l_i)lo—Q
2—-1 /10 10

99

1010
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(11)

Let X; be the indicator random variable for the ith

person’s vote as follows:

i =

) 1 if the ith person will vote for Bush,
0 if the #th person will not vote for Bush.

Since the n people vote independently, the X;s are mutually independent, with E[X;] = p and
var(X;) = p(1 — p). Since M, = Sn = &=t we have that E[M,] = p and

n

var(M,) = Var(X) _ p (ln_p ), Using Chebyshev inequality,

n

var(M,)

(0.01)2

IN

P(|M, —p| > 0.01)

<

In the last step we use the fact that p(1 —p) < i for p € [0,1]. Thus, if % . {L < 0.01 or equivalently
n > 250,000, then P(|M,, —p| > 0.01) < 0.01 is satisfied.

(12) [D]

Let X; be the indicator random variable for the ith day being rainy as follows:

- ) 1 ifit rains on the ith day,
’ 0 if it does not rain on the ith day .

We have that u = E[X;] = 0.1 and 02 = var(X;) = 0.1- (1 — 0.1) = 0.09. Then the number of rainy
days in a year is S365 = X1 + ... + X365, which is distributed as a binomial(n = 365,p = 0.1). Using
the central limit theorem, we have that

— 3654 _ 100 — 365 -
P(S365 > 100) = p<5365 365 41 _ 100 — 365 u)

v 365 o ov 365
_p <5365 — 365 - S 100 — 365 - 0.1)
oV 365 - 0.3v/365
635
~ 1—-¢ ——) . 2
(sva) ®
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Problem 2

(30 points, Each question is equally weighted at 6 points each)

The deer process is a Poisson process of arrival rate 8 (Ap = 8). The elephant process is a Poisson
process of arrival rate 2 (Ag = 2).

(a)

Since deer and elephants are the only animals that visit the river, then the animal process is the
merged process of the deer process and the elephant process. Since the deer process and the elephant
process are independent Poisson processes with A\p = 8 and A = 2 respectively, the animal process is
also a poisson process with Ay = Ap + Ag = 10. Therefore, the number of animals arriving the three
hours is distributed according to a Poisson distribution with parameter A4 - 3 = 30. Therefore,

E[ number of animals arriving in three hours | = X4 -3 =30,

var( number of animals arriving in three hours ) = A4-3=30.

o i (1) 0"

Let’s now focus on the animal arrivals themselves and ignore the inter-arrival times. Each animal

arrival can be either a deer arrival or a elephant arrival. Let Ej, denote the event that the Kt animal
arrival is an elephant. It is explained in the book (Example 5.14, Page 295) that
AE 1
PE)=—"—"—=-,
( k) AD + A\g b
and the events F1, Es, ... are independent. Regarding the arrival of elephant as “success”, it forms a

Bernoulli process, with parameter p = % Clearly, observing the 3rd elephant before the 9th deer is

3I'd

equivalent to that the elephant arrives before time 12 in the above Bernoulli process. Let T3

denote the 3'd elephant arrival time in the Bernoulli process.
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Since the deer arrival process is independent of the elephant arrival process, the event that “several
deer arrive by the end of 3 hours” is independent of any event defined on the elephant arrival process.
Let T} denote the first arrival time. Then the desired probability can be expressed as

P[ an elephant arrival in the next hour | no elephant arrival by the end of 3 hours ]
= P[Th1 <4|Ty > 3]
1-P[Ty >4|T1 > 3]
1-P[Ty > 1] (3)

= 1-—¢e2.

Step (3) follows from the memoryless property of the Poisson process.

(d)

As in part (b), regarding the arrival of elephant as “success”, it forms a Bernoulli process, with
parameter p = % Owing to the memoryless property, given that no “success” in the first 53 trials
(have seen 53 deer but no elephant), the number of trials, X1, up to and including the first “success”
is still a geometrical random variable with parameter p = % Since the number of “failures” (deers)
before the first “success” (elephant) is X; — 1, then

1
E[ number of more deers before the first elephant | = E[X; — 1] =—-—-1=4.
p

(e) |35
Let Tp (resp. Tg) denote the first arrival time of the deer process (resp. elephant process). The time
S until T clicked a picture of both a deer and a elephant is equal to max{Tp,Tr}. We express S into

two parts,

S =max{Tp,Tr} = min{Tp, T} + (max{Tp, T} — min{Tp,Tr}) = S1 + S2,

where S1 = min{Tp,Tg} is the first arrival time of an animal and So = max{Tp, T} — min{Tp, T}
is the additional time until both animals register one arrival. Since the animal arrival process is

Poisson with rate 10,
1

B =3

(4)
Concerning So, there are two cases.

(1) The first arrival is a deer, which happens with probability /\DATD/\E' Then we wait for an elephant

arrival, which takes ﬁ time on average.

(2) The first arrival is an elephant, which happens with probability )\D)\‘E)\E. Then we wait for a deer

arrival, which takes % time on average.
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Putting everything together, we have that

1 AD 1 A\E 1
E[S] = + B =
[ ] ADp + A AD+AE Mg AD+AE ADp
1,411
10 5 2 5 8
_ 2
407
(0.9-2)332¢— 18 0
f = e x>0,
(£) | /x (@) { 0 otherwise .

X denotes the time until the third successful picture of an elephant. Since the deer arrivals are
independent of the elephant arrivals and X is only related to elephant arrivals, we can focus on the
elephant arrival process. We split the elephant arrival process into two processes, one composed of
the successful elephant pictures (We call this process the “successful elephant picture arrival
process”) and the other one composed of unsuccessful elephant pictures (We call this process the
“unsuccessful elephant picture arrival process”). Since the quality of each picture is independent of
everything else, the successful elephant picture arrival process is a Poisson process with parameter
Asg = 0.9 - Ag. Therefore, X is the 3'd arrival time of the successful elephant picture arrival process.
Thus X has the following Erlang distribution
ozttt
0 otherwise .

fx(z) = {
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Problem 3

(28 points, Each question is equally weighted at 4 points each)

(a) The performance of the MIT football team is described by a Markov chain, where the state is
taken to be
(result of the game before the last game, result of the last game) .

There are four possible states: {WW, WL, LW, LL}. The corresponding transition probability graph
is We use throughout this problem the following labels for the four states.

WW =1, WL =2, LW =3, LL=4.
Then we have the probability transition matrix as follows

07 03 0 0
0 0 04 06
P=lpijlaa=1 06 04 0 0o |°

0 0 03 07

where p;; is the transition probability from state i to state j.

(b)

When the winning streak of the team gets interrupted, the chain is in state 2. The probability of
losing the next game is 0.6.

An alternative computation-intensive method: Denote the starting time to be n =1 and let X,

denote the result of the nth game. Since the team starts when they has won their previous two
games, we set Xg = X_1 = W. Then,

P[ the first future loss followed by another loss | Xg = X_1 = W |
+o00
= ) P the first future loss occurs at time n and another loss at time n+ 1 | Xg = X_1 = W]

n=1
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+00
= Y PXpn=X,=L Xy 1=..=X1 =W|[Xo=X_ =W]
n=1
+oo
= Zp?fl'pm'pzzi
n=1

—+00
= > 07710306
n=1

= 06.

0.7%.03 k=0,1,2,...

Clearly, X, the number of games played before the first loss, takes value in {0,1,...}. Using the same
notations as in (b),the PMF of X can be calculated as follows.

O0.W.

pX(k) = P[Xk+1:L,Xk:...:X1:W|Xo:X_1:W]
_ k
= P11 P12-

Therefore, X’s PMF is

0.7¢.03 k=0,1,2,...
px(k):{ 0 0.W.

(d)|m=m=%im=m3=¢

The Markov chain consists of a single aperiodic recurrent class, so the steady-state distribution
exists, denoted by 7 = (71, w2, w3, m4). Solving the equilibrium system 7P = 7 together with
S m =1, we get the desired result.

(o)

Recall that X, denotes the outcome of the nth game. The desired probability is

P[ X1000 = W | X1000 = X1001 ]
P[ X1000 = X1001 = W]
P[ X1000 = X1001]
P[ X 1000 = X1001 = W]
P[ X1000 = X1001 = W]+ P[ X1000 = X1001 = L]

Us!
) 5
T + T4 5)

Q

which evaluates to be %
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t1 = 14+07-¢14+0.3 %
(f) to = 1—|—0.4~t3
t3 = 14+06-t1+04-1%

ty = 0
T is the first passage time from state 1 to state 4. Let u1, uo, u3, g be the average first passage time
from each state to state 4. We have that E[T] = p; Since we are concerned with the first passage
time to state 4, the Markov chain’s behavior from state 4 is irrelevant. Therefore, we focus on the
modified Markov chain graph where state 4 is converted to an absorbing state. The average first

passage time to state 4 in the original Markov chain is equal to the average absorption time to state 4
in the modified Markov chain. The required linear equation system is

t1 = 1+07-t14+0.3 -ty
to = 1+04-t3
ts = 1+06-¢t1+0.4-ty
ty = 0
(Though not asked in the problem, we get the solution that u; =7, uo = %, 3 = %)

t1 = 1+0.7t;1 +0.3ty

to = 14 0.4t3+ 0.614
(g) ts = 14 0.6t1 +0.4t5

ts4 = 1+0.3t3

ts = 0

Three losses in a row can only be reached from state LL. Following this observation, we create a fifth
state LLL (labeled 5) and construct the following Markov transition graph. The probability
transition matrix of this Markov chain is

07 03 0 0 0
0 0 04 06 0
P=pjlixa=| 06 04 0 0 0 |,
0 0 03 0 07
0 0 03 0 1
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The number of games played by the MIT football team corresponds to the absorption time from
state 1 to state 5. Denote the average absorption time to state 5 as t1,to, t3,t4,t5. The linear
equation system is as follows.

t1 = 1+0.7t1 + 0.3ty
to = 14 0.4t3 + 0.614
ts = 1+0.6t; + 0.4¢-
ty = 1+40.3t3

ts = 0
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