
LECTURE 24 Review

Maximum likeliho d estimation• Reference: Section 9.3 • o

– Have model with unknown parameters:

• Course Evaluations (until 12/16) X ∼ pX(x; θ)

http://web.mit.edu/subjectevaluation – Pick θ that “makes data most likely”

max pX(x; θ)
θ

– Compare to Bayesian MAP estimation:
Outline

p
• X Θ(x θ)pΘ(θ)

Review max pΘ X(θ max
|

θ
| | x) or

|
θ pY (y)

– Maximum likelihood estimation
Sample mean estimate of θ = E[X]

– Confidence intervals •

Θ̂n = (X1 +
Linear regression

· · ·+Xn)/n
•

• 1− α confidence interval

• Binary hypothesis testing +P(Θ̂− Θ̂n ≤ θ ≤ n ) ≥ 1− α, ∀ θ

– Types of error

• confidence interval for sample mean– Likelihood ratio test (LRT)

– let z be s.t. Φ(z) = 1− α/2
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Regression Linear regression

y
Residual • Model y θ0 + θ x× ≈ 1

ˆ ˆ(xi, yi) x yi − θ0 − θ1xi × n
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× × • Solution (set derivatives to zero):
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• Data: (x1, y1), (x2, y2), . . . , (xn, yn)
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• Model: y θ0 + θ1x
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• Interpretation of the form of the solution
• One interpretation:

– Assume a model Y = θ0 + θ1X +W
Yi = θ0+ 2

θ1xi+Wi, Wi ∼ N(0,σ ), i.i.d.
W independent of X, with zero mean

– Likelihood function fX,Y θ(x, y; θ) is:| – Check that
� 1 �n cov( Y E[Y ])

c · exp − X, E
(y − θ0 − Y ) (X E[X])(

i θ1xi)
2

2 θ1 = =
− −

2σ 2i=1

�

var(X)

�

E (X − E[X])

�

– Take logs, same as (*)
– Solution formula for ˆ

� �

θ1 uses natural
– Least sq. ↔ pretend Wi i.i.d. normal estimates of the variance and covariance

476 Classical Statistical Inference Chap. 9

in the context of various probabilistic frameworks, which provide perspective and

a mechanism for quantitative analysis.

We first consider the case of only two variables, and then generalize. We

wish to model the relation between two variables of interest, x and y (e.g., years

of education and income), based on a collection of data pairs (xi, yi), i = 1, . . . , n.
For example, xi could be the years of education and yi the annual income of the

ith person in the sample. Often a two-dimensional plot of these samples indicates

a systematic, approximately linear relation between xi and yi. Then, it is natural
to attempt to build a linear model of the form

y ≈ θ0 + θ1x,

where θ0 and θ1 are unknown parameters to be estimated.

In particular, given some estimates θ̂0 and θ̂1 of the resulting parameters,

the value yi corresponding to xi, as predicted by the model, is

ŷi = θ̂0 + θ̂1xi.

Generally, ŷi will be different from the given value yi, and the corresponding

difference
ỹi = yi − ŷi,

is called the ith residual. A choice of estimates that results in small residuals

is considered to provide a good fit to the data. With this motivation, the linear

regression approach chooses the parameter estimates θ̂0 and θ̂1 that minimize

the sum of the squared residuals,

n�

i=1

(yi − ŷi)2 =

n�

i=1

(yi − θ0 − θ1xi)
2,

over all θ1 and θ2; see Fig. 9.5 for an illustration.

Figure 9.5: Illustration of a set of data pairs (xi, yi), and a linear model y =
θ̂0+θ̂1x, obtained by minimizing over θ0, θ1 the sum of the squares of the residuals
yi − θ0 − θ1xi.
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The world of linear regression The world of regression (ctd.)

• Multiple linear regression: • In practice, one also reports

– data: (xi, x�, x��, yi), i = 1, . . . , n – Confidence intervals for the θ
i i i

– model: y ≈ θ0 + θx+ θ
�
x
� + θ

��
x
�� – “Standard error” (estimate of σ)

– formulation: – 2
R , a measure of “explanatory power”

n

min
�

( 2
yi θ0 θxi θ

�
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�

θ
��
x
��
i )

θ,θ�,θ��
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− − − −
• Some common concerns

– Heteroskedasticity• Choosing the right variables

– Multicollinearity
– model y ≈ θ0 + θ1h(x)

e.g., 2
y ≈ θ0 + θ1x – Sometimes misused to conclude causal

relations
– work with data points (yi, h(x))

– etc.
– formulation:

n

min
�

(yi − 2
θ0 − θ1h1(xi))

θ
i=1

Binary hypothesis testing Likelihood ratio test (LRT)

• Binary θ; new terminology: • Bayesian case (MAP rule): choose H1 if:
P(H1 | X = x) > P(H0 | X = x)

– null hypothesis H0:
or

X ∼ pX(x;H0) [or fX(x;H0)]
P(X = x | H1)P(H1) P(X = x H0)P(H0)

– alternative hypothesis H1: >
|

P(X = x) P(X = x)
X ∼ pX(x;H1) [or fX(x;H1)] or

P(X = x | H1) P(H0)
>

• Partition the space of possible data vectors P(X = x | H0) P(H1)
Rejection region R: (likelihood ratio test)
reject H0 iff data ∈ R

Nonbayesian version: choose H1 if
• Types of errors:

•

P(X = x;H1)
> ξ (discrete case)

– Type I (false rejection, false alarm): P(X = x;H0)
H0 true, but rejected

fX(x;H1)
> ξ (continuous case)

α(R) = P(X ∈ R ;H0) fX(x;H0)

– Type II (false acceptance, threshold ξ trades off the two types of error
missed detection):

•

– choose ξ so that P(reject H ;H ) = α
H0 false, but accepted 0 0

(e.g., α = 0.05)
β(R) = P(X �∈ R ;H1)
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