LECTURE 21

e Readings: Sections 8.1-8.2

“It is the mark of truly educated people
to be deeply moved by statistics.”
(Oscar Wilde)

Reality
(e.g., customer arrivals)

e Design & interpretation of experiments

Model
(e.g., Poisson)

— polling, medical/pharmaceutical trials...
e Netflix competition e Finance
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e Signal processing

— Tracking, detection, speaker identification,...

Types of Inference models/approaches

e Model building versus inferring unknown
variables. E.g., assume X = aS + W

— Model building:
know ‘signal” S, observe X, infer a
— Estimation in the presence of noise:
know a, observe X, estimate S.

e Hypothesis testing: unknown takes one of
few possible values; aim at small
probability of incorrect decision

e Estimation: aim at a small estimation error

e Classical statistics:
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0. unknown parameter (not a r.v.)
o E.g., 8 = mass of electron

e Bayesian: Use priors & Bayes rule
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Bayesian inference: Use Bayes rule
¢ Hypothesis testing
— discrete data
re(@)rxjo(z|0)
px ()

Poix (0| ©) =

— continuous data
re(9) fxjo(z | 0)
Ix(x)

ro|x(0|z) =

e Estimation; continuous data

fe(0) fxje(z | 0)

forx (0| z) =
o Fx(2)
Zi = ©9+10; +t°0,
Xt = Zt+Wt, t=1,2,...,n

Bayes rule gives:

f@o,@1,@g|X1,..‘,Xn(907 01,62 | Lly--ey :En)

Estimation with discrete data

fe(®) pxjo(z | 0)

foix(@]z) = ox(2)

px(@) = [ Jo(®pxjo|6)dd

o Example:
— Coin with unknown parameter 6

— Observe X heads in n tosses

e \What is the Bayesian approach?
— Want to find f@‘X(O | x)

— Assume a prior on © (e.g., uniform)




Output of Bayesian Inference

e Posterior distribution:

= pmf pgx (- | z) or pdf fox(:|z)

e S

e If interested in a single answer:

— Maximum a posteriori probability (MAP):

o pox(0*|z) =maxypgx(0|x)
minimizes probability of error;
often used in hypothesis testing

o fox (0" | z) =maxy fox(0|x)
— Conditional expectation:

E[© | X =yl = [0fex (0| =) ds

— Single answers can be misleading!

Least Mean Squares Estimation

e Estimation in the absence of information

e find estimate ¢, to:
minimize E [(e - c)2]
e Optimal estimate: ¢ = E[©]

e Optimal mean squared error:

E[(© - E[©])?] = Var(©)

LMS Estimation of © based on X

e Twor.wv.'s©, X
e we observe that X ==z
— new universe: condition on X =z«
e E {(6 —)? X = :c} is minimized by
Cc =
. E[(@-E[@|X=m])2|x=x]
<E[(© —g(2))?| X =]

oE[(©-E[©] X])?| X]| <E[(©—-g(X))?]| X]

o E[(® - E[® | X])?’| <E[(© - 4(X))?]

E[© | X] minimizes E {(@ - g(X))Q}
over all estimators g(-)

LMS Estimation w. several measurements
e Unknown r.v. ©
e Observe values of r.v.'s Xq,...,Xn

e Best estimator: E[© | Xq,...,X,)]

e Can be hard to compute/implement

— involves multi-dimensional integrals, etc.
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