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Tutorial 11 Solutions
(a) The LMS estimator is

X 0<X <1

g(z) =E[Y|X] = X-3 1<X<2

Undefined  Otherwise

(b) If z € [0,1], the conditional PDF of Y is uniform over the interval [0, z], and

1:2
B (Y —g(X)°| X =a| = 5.

Similarly, if « € [1,2], the conditional PDF of Y is uniform over [1 — z, z], and

E[(Y - g(X)) | X = 2| =1/12

(c) The expectations E [(Y —g(X) )?] and E [var(Y|X)] are equal because by the law of iterated
expectations,

E((Y - g(X))!] =E[E[(Y —g(X))’ | X|| = Blvar(¥ | X)].

Recall from part (b) that

»

r 0<zx<«l1
= = 12 - )
var(Y(X = z) { % l<w<2
It follows that
122 2 21 2
Evar(Y | X)] = /xvar(Y | X =2)fx(z)dx = ; %.gazdaf%— . Egdx = %

Note that

B 2¢0/3 0<z<1,
fx@) = {2/3 1<z<2.

(d) The linear LMS estimator is

cov(X,Y)
L(X)=EY|+ —— X -E|X]|.
() = BlY]+ 2 - Bl
In order to calculate var(X) we first calculate E[X?] and E[X]?.
2 22 2,2
E[X? = /m37da:—|—/ 2? = dr,
o 3 1 3
_
)
2 52 2 2
E[X] = 22d =d
[X] /0 z°3 x+ | w3de,
_u
9
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var(X) = E[X?] - E[X]? = 2L

1z 9 2 rz 9 1 2 7
[Y] /0/032/ yfc+/1/%13y yde =g+ =g

To determine cov(X,Y) we need to evaluate E[XY].

EYX] = /z/yxyfxy(x,y)dydx

1 T 2 2 rx 2
= //yxfdyd:v—l—// yx —dydzx
0 Jo 3 1 Ja1” 3
41

36

Therefore cov(X,Y) = E[XY] — E[X|E[Y] = .. Therefore,

7 61 11
LX)=—-+—]X—-—].
(X) =g+l 5]
(e) The LMS estimator is the one that minimizes mean squared error (among all estimators of
Y based on X). The linear LMS estimator, therefore, cannot perform better than the LMS

estimator, i.e., we expect E[(Y — L(X))?] > E[(Y — g(X))?]. In fact,

E[(Y - L(X))?] o3-(1 - p?),
2

cov(X,Y)?
= - )
XYY

37 61
A
162 74
5
= 0.073> —
72
(f) For a single observation = of X, the MAP estimate is not unique since all possible values
of Y for this x are equally likely. Therefore, the MAP estimator does not give meaningful
results.

(a) X is a binomial random variable with parameters n = 3 and given the probability p that a
single bit is flipped in a transmission over the noisy channel:

3\ k 3—k —
1 s k—0,1,2,3
px(k;p) —_{ (kz)p ( 0 p)

O0.W.

(b) To derive the ML estimator for p based on Xji,..., X,, the numbers of bits flipped in the
first n three-bit messages, we need to find the value of p that maximizes the likelihood
function:

Pn = arg max, px, .. x,(k1, k2, ..., kn;p)

Since the X;’s are independent, the likelihood function simplifies to:
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)

Pxy, X (k1 K2y o Ky p) = IE px, (Kis p) = 11 (k,)pkz(l —p)*

The log-likelihood function is given by

" 3
log(px,,...x, (k1, k2, ... Z <kz log(p) + (3 — k;)log(1 — p) + log <k>>

=1

We then maximize the log-likelihood function with respect to p:

This yields the ML estimator:

The estimator is unbiased since:

By the weak law of large numbers, %2?21 X, converges in probability to E,[X;] = 3p, and
therefore P, = % » 1 X, converges in probability to p. Thus P, is consistent.

Sending 3 bit messages instead of 1 bit messages does not affect the ML estimate of p. To
see this, let Y; be a Bernoulli RV which takes the value 1 if the ith bit is flipped (with
probability p), and let m = 3n be the total number of bits sent over the channel. The ML

estimate of p is then
m

Pz g S Xi= 3%

Using the central limit theorem, B, is approximately a normal RV for large n. An approxi-
mate 95% confidence interval for p is then,

[Pn — 1964/ —, P, + 1.964 /”}
m m
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where v is the variance of Y.

As suggested by the question, we estimate the unknown variance v by the convervative
upper bound of 1/4. We are also give that n = 100 and the number of bits flipped is 20,
yielding P, = %. Thus, an approximate 95% confidence interval is [0.01,0.123].

Other estimates for the variance are the sample variance and the estimate Pn(l — Pn) They
potentially result in narrower confidence intervals than the conservative variance estimate
used in part (e).
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