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Tutorial 7: Solutions 
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 Let random 1. (a) For each round, the probability that both Alice and Bob have a loss is

variable X represent the total number of rounds played until the first time where they both 
have a loss. Then X is a geometric random variable with parameter p = 1/9 and has the 
following PMF. 

� 8�x−1� 1� 

pX(x) = (1 − p)x−1 p = , x = 1, 2, . . . 
9 9 

(b) First, consider the number of games, K3 Bob played until his third loss. Random variable 
K3 is a Pascal random variable and has the following PMF. 

k − 1 1�3 2�k−3 
pK3 (k) = k = 3, 4, 5, · · · 

3 − 1 3 3 

In this question, we are interested in another random variable Z defined as the time at 
which Bob has his third loss. Note that Z = 2K3. By changing variables, we obtain 

z − 1 � 1�3� 2� 
z 
−3 

22pZ(z) =
 z = 6, 8, 10,
 · · ·

3 − 1 3 3


(c) Let A be the event that Alice wins, and Let B be the event that Bob wins. The event A∪B 
is then the event that either A wins or B wins or both A and B win, and the event A∩B is 
the event that both A and B win. Suppose we observe this gambling process, and let U be 
a random variable indicating the number of rounds we see until at least one of them wins. 
Random variable U is a geometric random variable with parameter p = P (A∪B) = 1− 1
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Consider another random variable V representing the number of additional rounds we have 
to observe until the other wins. If both Alice and Bob win at the Uth round, then V = 0. 

This occurs with probability P (A ∩ B|A ∪ B) =
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 If Alice wins the Uth round, then the 

time V until Bob wins is a geometric random variable with parameter p = 1/2+ 1/6 = 2/3. 

This occurs with probability P (A ∩ Bc|A ∪ B) =
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 Likewise, if Bob wins the Uth 

round, then the time V until Alice wins is a geometric random variable with parameter 

=

2
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3 .The number of p = 1/2 + 1/6 = 2/3. This occurs with probability P (B ∩ Ac|A ∪ B)

rounds until each one of them has won at least once, N is 

N = U + V 

The expectation of N is then: 

E[N ] = E[U ] + E[V ] 

1 1 1 
= + 0 · P (A ∩ B|A ∪ B) +
 P (A|A ∪ B) +
 P (B|A ∪ B)
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There is another approach to this problem. Consider the following partition. 

A1: both win first round


A2:Only Alice wins first round


A3: Only Bob wins first round


A4: both lose first round


Event A1 occurs with probability 2

3 · 3
2 . Event A2 occurs with probability 2

3 · 3
1 . Event 

A3 occurs with probability 
3

1 · 
3

2 . Event A4 occurs with probability 
3

1 · 
3

1 . When event A2 

(A3) occurs, the distribution on the time until Bob (Alice) wins is a geometric random 
variable with mean 1 . When event A4 occurs, the additional time until Alice and Bob 2

3 

win is distributed identically to that at time 0 by the fresh-start property. By the total 
expectation theorem, 

E[N ] = E[N |A1]P (A1) + E[N |A2]P (A2) + E[N |A3]P (A3)E[N ] + E[N |A4]P (A4) 
� 2 2� � 1 � � 1 2� � 1 2� � 1 1� 

= 1 · · + 1 + · + · + · + (1 + E[N ]) · · 
3 3 2 3 3 3 3	 3 3 

3 

15 Solving for E[N ], we get E[N ] = 
8 . 

2. Problem 6.6, page 328 in text. See text for solutions. 

3.	 (a) The number of trains arriving on days 1, 2, and 3 is independent of the number of trains 
arriving on day 0. Let N denote the total number of trains that arrive on days 1, 2, and 3. 
Then N is a Poisson random variable with parameter 3λ = 9, and we have 

P (no train on days 1,2,3 | one train on day 1) = P (no train on days 1,2,3) 

= P (N = 0) 

e−990 

= 
0! 

−9 = e	 . 

(b) The event that the next arrival is more than three days after the train arrival on day 0 is

the same as the event that there are zero arrivals in the three days after the train arrival

on day 0. Therefore the required probability is the same as that found in part (a), namely,

−9e . 

(c) The number of trains arriving in the first 2 days is independent of the number of trains

arriving on day 4. Therefore, we have


P (0 trains in first 2 days and 4 trains on day 4) = P (0 trains in first 2 days) · P (4 trains on day 4) 

(2λ)0 λ4 
−2λ −λ= e · e 

0! 4! 
34 

−9 = e . 
4! 
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(d) The event that it takes more than 2 days for the 5th arrival is equivalent to the event that 
there are at most 4 arrivals in the first 2 days. Therefore the required probability is equal 
to 

4 4 
� � (2λ)k


P (exactly k arrivals in first 2 days) = e −2λ


k! 
k=0 k=0 

(2λ)0 (2λ)1 (2λ)2 (2λ)3 (2λ)4 
−2λ = e + + + + 

0! 1! 2! 3! 4! 

= e −6(1 + 6 + 18 + 36 + 54) 

= 115e −6 . 
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