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1. 

cov(aX + b, Y )
ρ(aX + b, Y ) = √ 

var(aX + b)(var(Y )) 

E[(aX + b − E[aX + b])(Y − E[Y ])] 
= √ 

a2var(X)var(Y ) 

E[(aX + b − aE[X] − b)(Y − E[Y ])] 
= √ 

a var(X)var(Y ) 

aE[(X − E[X])(Y − E[Y ])] 
= √ 

a var(X)var(Y ) 

cov(X,Y ) 
= √ 

var(X)var(Y ) 

= ρ(X,Y ) 

As an example where this property of the correlation coefficient is relevant, consider the homework 
and exam scores of students in a class. We expect the homework and exam scores to be positively 
correlated and thus have a positive correlation coefficient. Note that, in this example, the above 
property will mean that the correlation coefficient will not change whether the exam is out of 
105 points, 10 points, or any other number of points. 

2. 

(a) When z ≥ 0: 

FZ(z) = P(X − Y ≤ z) = P(X ≤ Y + z) 
∫ ∞ ∫ y+z 

= fX,Y (x, y ′ )dxdy 
0 0 

∫ ∞ ∫ y+z 

= λe−λy λe−λxdxdy 
0 0 

= λλy 1 − e −λ(y+z) dy 

−λz y=∞ e ∣ 

= 1 + e −2λy 

2 y=0 

1 −λz = 1 − e z ≥ 0 
2 
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When z < 0: 

∫ ∞ ∫ y+z 

P(X ≤ Y + z) = fX,Y (x, y)dxdy 
0 0 

∫ ∞ ∫ ∞ 

= λe−λx λe−λydydx 
0 x−z 

∫ ∞ 

= λe−λx e −λ(x−z)dx 
0 

∫ ∞ 

= e λz λe−2λxdx 
0 

=
1 
e λz z ≤ 0 

2 

 

 
1 − 2

1 e−λz z ≥ 0 
FZ(z) = 

 1 λz e z < 02
 

 

λe−λz z ≥ 0
d 2

fZ(z) = FZ(z) = 
dz  λ λz e z < 02

Hence, 

fZ(z) = 
λ

e λ|z| 
2 

(b) Solving using the total probability theorem, we have: 

∫ ∞ 

fZ(z) = fX(x)fZ|X(z|x)dx 
−∞ 

∫ ∞ 

= fX(x)fY |X(x − z|x)dx 
−∞ 

∫ ∞ 

= fX(x)fY (x − z)dx 
−∞ 

First when z < 0, we have: 

∫ ∞ ∞ 

fX(x)fY (x − z)dx = λe−λxλe−λ(x−z)dx 
−∞ 0 

∫ ∞ 

= λeλz λe−2λxdx 
0 

λ λz = e 
2 
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Then, when z ≥ 0 we have: 

∫ ∞	 ∫ ∞ 

fX(x)fY (x − z)dx = λe−λxλe−λ(x−z)dx 
−∞ z 

∫ ∞ 

= λeλz λe−2λxdx 
z 

λ λz −2λz = e e 
2 
λ −λz = e 
2 

fZ(z)	 = 
λ

e −λ|z| ∀z 
2 

3.	 (a) We have X = Rcos(Θ) and Y = Rsin(Θ). Recall that in polar coordinates, the differential 
area is dA = dxdy = rdrdθ. So 

∫ r ∫ 2π 

FR(r) = P(R ≤ r) = fX(r ′ cosθ)fY (r 
′ sinθ)dθ r ′ dr ′ 

0 0 
∫ r ∫ 2π 

=
1 

e −(r ′)2/2dθ r ′ dr ′ 
2π0 0 

∫ r ∫ 2π 

= r ′ e −(r ′)2/2dr ′	
dθ 

2π0 0 
∫ 2/2r

= e −udu (u = (r ′ )
2
/2) 

0 

1 − e−r2/2 r ≥ 0
FR(r)	 = 

0 r < 0 

fR(r) = 
d

FR(r) = (−1/2)(2r)(−e −r2 /2)
dr 

= re −r2/2 , r ≥ 0 
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(b) 

∫ θ ∫ ∞ 

FΘ(θ) = P(Θ ≤ θ) = fX(rcosθ ′ )fY (rsinθ ′ )rdr dθ ′ 

0 0 

= 

∫ θ ∞ 1 
e −r2/2rdr dθ ′ 

2π0 0 

−r= 
∞ 

re 
2/2dr 

θ dθ ′ 

2π0 0 

θ ∞ 

= e −udu (u = r 2/2) 
2π 0 

∣∞θ ( −u 
)
∣ θ 

= −e = 0 ≤ θ ≤ 2π 
2π 0 2π 

 

 
0 θ < 0 

FΘ(θ) = 2
θ
π 0 ≤ θ ≤ 2π 

 

1 θ ≥ 2π 

d 1 
fΘ(θ) = FΘ(θ) = 0 ≤ θ ≤ 2π 

dθ 2π 

(c) 

FR,Θ(r, θ) = P (R ≤ r,Θ ≤ θ) = 
θ r 1 

r ′ e −(r ′ )2/2dr ′ dθ ′ 
2π0 0 

= 

∫ θ ∫ r2/2 1 
e −udu dθ ′ (u = (r ′ )

2
/2) 

2π0 0 
∫ θ ( ) 

= 
1

1 − e −r2/2 dθ ′ 
2π0 

= 
θ 

1 − e −r2/2 r ≥ 0, θ > 2π 
2π 

 

 

θ 1 − e−r2/2 r ≥ 0, 0 ≤ θ ≤ 2π 
 2π


FR,Θ(r, θ) = 1 − e−r2/2 r ≥ 0, θ > 2π

 

 

0 otherwise 

fR,Θ(r, θ) = 
∂ ∂

FR,Θ(r, θ) =
1 

re −r2/2 r ≥ 0, 0 ≤ θ ≤ 2π 
∂r ∂θ 2π 

Note: The PDF of R2 is exponentially distributed with parameter λ = 1/2. This is a

very convenient way to generate normal random variables from independent uniform and

exponential random variables. We can generate an arbitrary random variable X with CDF

FX by first generating a uniform random variable and then passing the samples from the

uniform distribution through the function FX 

−1 . But since we don’t have a closed-form

expression for the CDF of a normal random variable, this method doesn’t work. However,


Page 4 of 6 



[ ] 

Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2010) 

we do have a closed-form expression for the exponential distribution. Therefore, we can 
generate an exponential distribution with parameter 1/2 and we can generate a uniform 
distribution in [0, 2π], and with these two distributions we can generate standard normal 
distributions. 

4. Problem 4.20, page 250 in text. See text for the proof. 

An alternative proof is given below: 

Consider the problem of picking a parameter α to minimize the expected squared difference 
between two random variables X and Y . Consider 

J(α) = E (X − αY )2 

with Y 6 0. We start with a variational calculation to find α that minimizes J(α). = The value of 
α which minimizes J(α) is found by setting the first derivative of J(α) to zero (since, for Y 6 0, = 
d2 

J(α) = 2E[Y 2] > 0). 
dα2 

α 

J(
α)

 

dJ 

dα 
=0 

d d ( ) 

J(α) = E[X2] − 2αE[XY ] + α2E[Y 2] = 0 
dα dα 

E[XY ] 
→ α = minimizes J(α). 

E[Y 2] 

Page 5 of 6 



Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2010) 

Then 
[ ] 

J 

( 

E[XY ] 

E[Y 2] 

) 

= E 

( 

X − 
E[XY ] 

E[Y 2] 
Y 

)2 

≥ 0 

= E[X2] − 2
(E[XY ])2 

E[Y 2] 
+ 

(E[XY ])2E[Y 2] 

(E[Y 2])2 

= E[X2] − 
(E[XY ])2 

≥ 0 
E[Y 2] 

Rearranging this expression gives the Schwarz inequality for expected values: 

E[X2]E[Y 2] ≥ (E[XY ])2 

Note that in the above derivation, we assumed Y 6 0 so that E[Y 2] > 0. If we assume Y == 0 
then the Schwarz inequality will hold with equality since then E[XY ] = 0 and E[Y 2] = 0. 
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