
� 

Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2010) 

6.041/6.431 Fall 2010 Final Exam Solutions

Wednesday, December 15, 9:00AM - 12:00noon.


Problem 1. (32 points) Consider a Markov chain {Xn; n = 0, 1, . . .}, specified by the following 
transition diagram. 
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1.	 (4 points) Given that the chain starts with X0 = 1, find the probability that X2 = 2. 

Solution: The two-step transition probability is: 

r12(2)	 = p11 · p12 + p12 · p22 

= 0.6 0.4 + 0.4 0.5· · 
= 0.44. 

2.	 (4 points) Find the steady-state probabilities π1, π2, π3 of the different states. 

Solution: We set up the balance equations of a birth-death process and the normalization equation 
as such: 

π1p12 = π2p21 

π2p23 = π3p32 

π1 + π2 + π3 = 1. 

Solving the system of equations yields the following steady state probabilities:


π1 = 1/9


π2 = 2/9


π3 = 6/9.


In case you did not do part 2 correctly, in all subsequent parts of this problem you can just use the 
symbols πi: you do not need to plug in actual numbers. 

3.	 (4 points) Let Yn = Xn − Xn−1. Thus, Yn = 1 indicates that the nth transition was to the right, 
Yn = 0 indicates it was a self-transition, and Yn = −1 indicates it was a transition to the left. Find 
lim P(Yn = 1). 

n→∞
Solution: Using the total probability theorem and steady state probabilities, 

3

lim P(Yn = 1) = πi · P(Yn = 1 | Xn−1 = i) 
n→∞ 

i=1 

= π1p12 + π2p23 

= 1/9. 
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4.	 (4 points) Is the sequence Yn a Markov chain? Justify your answer. 

Solution: No. Assume the Markov process is in steady state. To satisfy the Markov property, 

P(Yn = 1 | Yn−1 = 1, Yn−2 = 1) = P(Yn = 1 | Yn−1 = 1). 

For large n,

P(Yn = 1 | Yn−1 = 1, Yn−2 = 1) = 0,


since it is not possible to move upwards 3 times in a row. However in steady state, 

P(Yn = 1 Yn−1 = 1) = 
P({Yn = 1} ∩ {Yn−1 = 1})|	

P(Yn−1 = 1) 
π1p12p23 = 

π1p12 + π2p23 

= 0. 

Therefore, the sequence Yn is not a Markov chain. 

5.	 (4 points) Given that the nth transition was a transition to the right (Yn = 1), find the probability 
that the previous state was state 1. (You can assume that n is large.) 

Solution: Using Bayes’ Rule, 

P(Xn−1 = 1 | Yn = 1) = �3 

P(Xn−1 = 1)P(Yn = 1 | Xn−1 = 1) 

i=1 P(Xn−1 = i)P(Yn = 1 | Xn−1 = i) 
π1p12 = 

π1p12 + π2p23 

= 2/5. 

6.	 (4 points) Suppose that X0 = 1. Let T be defined as the first positive time at which the state is 
again equal to 1. Show how to find E[T ]. (It is enough to write down whatever equation(s) needs 
to be solved; you do not have to actually solve it/them or to produce a numerical answer.) 

Solution: In order to find the the mean recurrence time of state 1, the mean first passage times to 
state 1 are first calculated by solving the following system of equations: 

t2 = 1 + p22t2 + p23t3 

t3 = 1 + p32t2 + p33t3. 

The mean recurrence time of state 1 is then t∗ 
1 = 1 + p12t2.


Solving the system of equations yields t2 = 20 and t3 = 30 and t∗ 
1 = 9.


7.	 (4 points) Does the sequence X1, X2, X3, . . . converge in probability? If yes, to what? If not, just 
say “no” without explanation.


Solution: No.
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8.	 (4 points) Let Zn = max{X1, . . . , Xn}. Does the sequence Z1, Z2, Z3, . . . converge in probability? 
If yes, to what? If not, just say “no” without explanation. 

Solution: Yes. The sequence converges to 3 in probability.


For the original markov chain, states {1, 2, 3} form one single recurrent class. Therefore, the Markov

process will eventually visit each state with probability 1. In this case, the sequence Zn will, with

probability 1, converge to 3 once Xn visits 3 for the first time.


Problem 2. (68 points) Alice shows up at an Athena cluster at time zero and spends her time 
exclusively in typing emails. The times that her emails are sent are a Poisson process with rate λA per 
hour. 

1.	 (3 points) What is the probability that Alice sent exactly three emails during the time interval 
[1, 2]?


Solution: The number of emails Alice sends in the interval [1, 2] is a Poisson random variable with

parameter λA. So we have:


λA 
3 e−λA 

P(3, 1) = .
3! 

2. Let Y1 and Y2 be the times at which Alice’s first and second emails were sent. 

(a)	 (3 points) Find E[Y2 | Y1].

Solution: Define T2 as the second inter-arrival time in Alice’s Poisson process. Then:


Y2 = Y1 + T2 

E[Y2 | Y1] = E[Y1 + T2 | Y1] = Y1 + E[T2] = Y1 + 1/λA. 

(b)	 (3 points) Find the PDF of Y1
2 . 

Solution: Let Z = Y1
2 . Then we first find the CDF of Z and differentiate to find the PDF of 

Z: �


FZ (z) = P(Y 2 ≤ z) = P(−
√

z ≤ Y1 ≤
√

z) = 
1 − e−λA

√
z z ≥ 0


1 0 z < 0. 

fZ (z) = 
dFZ (z)

= λAe−λA
√

z 1 
z−1/2 (z ≥ 0)

dz	 2

fZ (z) =	 2
λ√A 

z e
−λA

√
z z ≥ 0 

0 z < 0. 

(c)	 (3 points) Find the joint PDF of Y1 and Y2. 
Solution: 

fY1,Y2 (y1, y2) = fY1 (y1)fY2|Y1 (y2|y1) 
= fY1 (y1)fT2 (y2 − y1) 
= λAe−λAy1 λAe−λA(y2−y1) y2 ≥ y1 ≥ 0 

λ2 
Ae−λAy2 y2 ≥ y1 ≥ 0 

= 
0 otherwise. 
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3. You show up at time 1 and you are told that Alice has sent exactly one email so far. (Only give 
answers here, no need to justify them.) 

(a)	 (3 points) What is the conditional expectation of Y2 given this information? 

Solution: Let A be the event {exactly one arrival in the interval [0,1]}. Looking forward from 
time t = 1, the time until the next arrival is simply an exponential random variable (T ). So, 

E[Y2 | A] = 1 + E[T ] = 1 + 1/λA. 

(b)	 (3 points) What is the conditional expectation of Y1 given this information?


Solution: Given A, the times in this interval are equally likely for the arrival Y1. Thus,


E[Y1 | A] = 1/2. 

4. Bob just finished exercising (without email access) and sits next to Alice at time 1. He starts typing 
emails at time 1, and fires them according to an independent Poisson process with rate λB . 

(a)	 (5 points) What is the PMF of the total number of emails sent by the two of them together 
during the interval [0, 2]? 

Solution: Let K be the total number of emails sent in [0, 2]. Let K1 be the total number of 
emails sent in [0, 1), and let K2 be the total number of emails sent in [1, 2]. Then K = K1 + K2 

where K1 is a Poisson random variable with parameter λA and K2 is a Poisson random variable 
with parameter λA + λB (since the emails sent by both Alice and Bob after time t = 1 arrive 
according to the merged Poisson process of Alice’s emails and Bob’s emails). Since K is the 
sum of independent Poisson random variables, K is a Poisson random variable with parameter 
2λA + λB . So K has the distribution: 

(2λA + λB)ke−(2λA+λB ) 

pK (k) =	 k = 0, 1, . . . . 
k! 

(b)	 (5 points) What is the expected value of the total typing time associated with the email that 
Alice is typing at the time that Bob shows up? (Here, “total typing time” includes the time 
that Alice spent on that email both before and after Bob’s arrival.) 
Solution: The total typing time Q associated with the email that Alice is typing at the 
time Bob shows up is the sum of S0, the length of time between Alice’s last email or time 0 
(whichever is later) and time 1, and T1, the length of time from 1 to the time at which Alice 
sends her current email. T1 is exponential with parameter λA. and S0 = min{T0, 1}, where T0 

is exponential with parameter λA. 
Then,


Q = S0 + T1 = min{T0, 1} + T1


and

E[Q] = E[S0] + E[T1].


We have: E[T1] = 1/λA. 
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We can find E[S0] via the law of total expectations: 

E[S0] = E[min{T0, 1}] =	 P(T0 ≤ 1)E[T0 | T0 ≤ 1] + P(T0 > 1)E[1|T0 > 1] � � � 1 

= 1 − e−λA tfT |T0≤1(t) dt + e−λA 

0 � � � 1 λAe−λAt 

= 1 − e−λA t
(1 − e−λA ) 

dt + e−λA 

0� 1 

= tλAe−λAt dt + e−λA 

0 

1 
� 1 

= tλ2 
Ae−λAt dt + e−λA 

λA 0 
1 � � 

= 1 − e−λA − λAe−λA + e−λA 

λA 
1 � � 

= 1 − e−λA 

λA 

where the above integral is evaluated by manipulating the integrand into an Erlang order 2 
PDF and equating the integral of this PDF from 0 to 1 to the probability that there are 2 or 
more arrivals in the first hour (i.e. P(Y2 < 1) = 1 − P(0, 1) − P(1, 1)). Alternatively, one can 
integrate by parts and arrive at the same result. 
Combining the above expectations:


1 � � 1 1 � �

E[Q] = E[S0] + E[T1] = 1 − e−λA + = 2 − e−λA .


λA	 λA λA 

(c)	 (5 points) What is the expected value of the time until each one of them has sent at least one 
email? (Note that we count time starting from time 0, and we take into account any emails 
possibly sent out by Alice during the interval [0, 1].) 
Solution: Define U as the time from t = 0 until each person has sent at least one email.

Define V as the remaining time from when Bob arrives (time 1) until each person has sent at

least one email (so V = U − 1).

Define S as the time until Bob sends his first email after time 1.

Define the event A = {Alice sends one or more emails in the time interval [0, 1]} = {Y1 ≤ 1},

where Y1 is the time Alice sends her first email.

Define the event B = {After time 1, Bob sends his next email before Alice does}, which is

equivalent to the event where the next arrival in the merged process from Alice and Bob’s

orginal processes (starting from time 1) comes from Bob’s process.

We have:


P(A) = P(Y1 ≤ 1) = 1 − e−λA


P(B) = 
λB 

. 
λA + λB 
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Then, 

E[U ] = P(A)E[U | A] + P(Ac)E[U | Ac] 
=	 (1 − e−λA )(1 + E[V | A]) + e−λA (1 + E[V | Ac]) 
=	 (1 − e−λA )(1 + E[V | A]) + e−λA (1 + P(B | Ac)E[V | B ∩ Ac] + P(Bc | Ac)E[V | Bc ∩ Ac]) 
=	 (1 − e−λA )(1 + E[V A]) + e−λA (1 + P(B)E[V B ∩ Ac] + P(Bc)E[V Bc ∩ Ac]) 

=	 (1 − e−λA )(1 + E[V | A]) + e−λA 1 + 
λA 

λ

+ 
B 

λB 
E[V | B ∩ Ac] + 

λA 

λ

+ 
A 

λB 
E[V | Bc ∩ Ac] . 

Note that E[V | Bc ∩ Ac] is the expected value of the time until each of them sends one email 
after time 1 (since, given Ac, Alice did not send any in the interval [0, 1]) and given Alice 
sends an email before Bob. Then this is the expected time until an arrival in the merged 
process followed by the expected time until an arrival in Bob’s process. So, E[V Bc ∩ Ac] = 

1 + 1 . 
|


λA+λB λB


Similarly, E[V B ∩ Ac] is the time until each sends an email after time 1, given Bob sends an | 
1 1email before Alice. So E[V | B ∩ Ac] = + .λA+λB λA 

Also, E[V | A] is the expected time it takes for Bob to send his first email after time 1 (since, 
given A, Alice already sent an email in the interval [0, 1]). So E[V | A] = E[S] = 1/λB. 
Combining all of this with the above, we have: 

E[U ] = (1 − e−λA )(1 + 1/λB )� � � � �� 

+e−λA 1 + 
λB 1 

+
1

+ 
λA 1 

+
1 

. 
λA + λB λA + λB λA λA + λB λA + λB λB 

(d)	 (5 points) Given that a total of 10 emails were sent during the interval [0, 2], what is the 
probability that exactly 4 of them were sent by Alice? 

Solution: 

P(Alice sent 4 in [0, 2] total 10 sent in [0, 2]) = 
P(Alice sent 4 in [0, 2] ∩ total 10 sent in [0, 2])| 

P(total 10 sent in [0, 2]) 
P(Alice sent 4 in [0, 2] ∩ Bob sent 6 [0, 2])

= 
P(total 10 sent in [0, 2])� � � � 

(2λA)4e−2λA (λB )
6e−λB 

4! 6! 
= 

(2λA+λB )10e−2λA+λB 

10!�	 �� �4� �610 2λA λB =	 .
4 2λA + λB 2λA + λB 

As the form of the solution suggests, the problem can be solved alternatively by computing 
the probability of a single email being sent by Alice, given it was sent in the interval [0, 2]. 
This can be found by viewing the number of emails sent by Alice in [0, 2] as the number of 
arrivals arising from a Poisson process with twice the rate (2λA) in an interval of half the 
duration (particularly, the interval [1, 2]), then merging this process with Bob’s process. Then 
the probability that an email sent in the interval [0, 2] was sent by Alice is the probability that 
an arrival in this new merged process came from the newly constructed 2λA rate process: 
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2λA 
p = .

2λA + λB 

Then, out of 10 emails, the probability that 4 came from Alice is simply a binomial probability 
with 4 successes in 10 trials, which agrees with the solution above. 

5.	 (5 points) Suppose that λA = 4. Use Chebyshev’s inequality to find an upper bound on the 
probability that Alice sent at least 5 emails during the time interval [0, 1]. Does the Markov 
inequality provide a better bound? 

Solution: 

Let N be the number of emails Alice sent in the interval [0, 1]. Since N is a Poisson random variable 
with parameter λA, 

E[N ] = var(N) = λA = 4. 

To apply the Chebyshev inequality, we recognize: 

P(N ≥ 5) = P(N − 4 ≥ 1) ≤ P(|N − 4| ≥ 1) ≤ 
var(N) 

= 4.
12 

In this case, the upper-bound of 4 found by application of the Chebyshev inequality is uninformative, 
as we already knew P(N ≥ 5) ≤ 1. 

To find a better bound on this probability, use the Markov inequality, which gives: 

P(N ≥ 5) ≤ 
E[

5 
N ] 

= 
5
4 
. 

6.	 (5 points) You do not know λA but you watch Alice for an hour and see that she sent exactly 5 
emails. Derive the maximum likelihood estimate of λA based on this information. 

Solution: 

λ̂A = arg max log (pN (5; λ)) 
λ 

λ5e−λ 

= arg max log 
λ 5! 

= arg max −log(5!) + 5log(λ) − λ. 
λ 

Setting the first derivative to zero 

5 
λ 
− 1 = 0 

λ̂A = 5. 
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7.	 (5 points) We have reasons to believe that λA is a large number. Let N be the number of emails 
sent during the interval [0, 1]. Justify why the CLT can be applied to N , and give a precise statement 
of the CLT in this case. 

Solution: With λA large, we assume λA � 1. For simplicity, assume λA is an integer. We can 
divide the interval [0, 1] into λA disjoint intervals, each with duration 1/λA, so that these intervals 
span the entire interval from [0, 1]. Let Ni be the number of arrivals in the ith such interval, so that 
the Ni’s are independent, identically distributed Poisson random variables with parameter 1. Since 
N is defined as the number of arrivals in the interval [0, 1], then N = N1 + + NλA . Since λA � 1,· · · 
then N is the sum of a large number of independent and identically distributed random variables, 
where the distribution of Ni does not change as the number of terms in the sum increases. Hence, 
N is approximately normal with mean λA and variance λA. 

If λA is not an integer, the same argument holds, except that instead of having λA intervals, we 
have an integer number of intervals equal to the integer part of λA (λ̄ 

A =floor(λA)) of length 1/λA 

and an extra interval of a shorter length (λA − λ̄ 
A)/λA. 

Now, N is a sum of λA independent, identically distributed Poisson random variables with parameter 
1 added to another Poisson random variable (also independent of all the other Poisson random 
variables) with parameter (λA − λ̄ 

A). In this case, N would need a small correction to apply 
the central limit theorem as we are familiar with it; however, it turns out that even without this 
correction, adding the extra Poisson random variable does not preclude the distribution of N from 
being approximately normal, for large λA, and the central limit theorem still applies. 

To arrive at a precise statement of the CLT, we must “standardize” N by subtracting its mean 
then dividing by its standard deviation. After having done so, the CDF of the standardized version 
of N should converge to the standard normal CDF as the number of terms in the sum approaches 
infinity (as λA →∞). 

Therefore, the precise statement of the CLT when applied to N is: 

lim P 
N − λA = Φ(z) 

λA→∞ 
√

λA 
≤ z 

where Φ(z) is the standard normal CDF. 

8.	 (5 points) Under the same assumption as in last part, that λA is large, you can now pretend that 
N is a normal random variable. Suppose that you observe the value of N . Give an (approximately) 
95% confidence interval for λA. State precisely what approximations you are making. 

Possibly useful facts: The cumulative normal distribution satisfies Φ(1.645) = 0.95 and

Φ(1.96) = 0.975.


Solution: We begin by estimating λA with its ML estimator Λ̂A = N , where E[N ] = λA. With 
λA large, the CLT applies, and we can assume N has an approximately normal distribution. Since 
var(N) = λA, we can also approximate the variance of N with ML estimator for λA, so var(N) ≈ N , 
and σN ≈

√
N . 
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To find the 95% confidence interval, we find β such that: 

0.95 = P ( N − λA ≤ β) 

= P 
|N √− 

N

λA| ≤ √β
N 

β ≈ 2Φ √
N

. 

So, we find:

β ≈

√
NΦ−1(0.975) = 1.96

√
N.


Thus, we can write:

P(N − 1.96

√
N ≤ λA ≤ N + 1.96

√
N) ≈ 0.95.


So, the approximate 95% confidence interval is: [N − 1.96
√

N, N + 1.96
√

N ]. 

9. You are now told that λA is actually the realized value of an exponential random variable Λ, with 
parameter 2:


fΛ(λ) = 2e−2λ , λ ≥ 0.


(a)	 (5 points) Find E[N2].

Solution:


E[N2] = E[E[N2 | Λ]] = E[var(N | Λ) + (E[N | Λ])2] 
=	 E[Λ + Λ2] 
=	 E[Λ] + var(Λ) + (E[Λ])2 

1 2 
= +

2 22 

= 1. 

(b)	 (5 points) Find the linear least squares estimator of Λ given N .

Solution:


ˆ	 cov(N, Λ)
ΛLLMS = E[Λ] + 

var(N)
(N − E[N ]). 

Solving for the above quantities: 

1
E[Λ] = 

2 

1
E[N ] = E[E[N | Λ]] = E[Λ] = 

2
. 

1 3
var(N) = E[N2] − (E[N ])2 = 1 − = .

22 4

1
cov(N, Λ) = E[NΛ] − E[N ]E[Λ] = E[E[NΛ | Λ]] − (E[Λ])2 = E[Λ2] − (E[Λ])2 = var(Λ) = 

4
. 
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Substituting these into the equation above:


Λ̂LLMS = 

= 

E[Λ] + 
cov(N, Λ) 
var(N) 

(N − E[N ]) 

1 
2 

+ 
1/4 
3/4 

� 

N − 
1 
2 

� 

= 
1 
3 

(N + 1) . 
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