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Problem 2. (20 points) 

(a) (5 points) 
We’re given that the joint PDF is constant in the shaded region, and since the PDF must 
integrate to 1, we know that the constant must equal 1 over the area of the region. Thus, 

1 
c = = 2.

1/2 

(b) (5 points) 
The marginal PDFs of X and Y are found by integrating the joint PDF over all possible 
y’s and x’s, respectively. To find the marginal PDF of X, we take a particular value x and 
integrate over all possible y values in that vertical “slice” at X = x. Since the joint PDF is 
constant, this integral simplifies to just multiplying the joint PDF by the width of the “slice”. 
Because the width of the slice is always 1/2 for any x ∈ [0, 1], we have that the marginal PDF 
of X is uniform over that interval: 

fX (x) =	
1, 0 ≤ x ≤ 1, 
0, otherwise. 

Since the joint PDF is symmetric, the marginal PDF of Y is also uniform: 

fY (y) =	
1, 0 ≤ y ≤ 1, 
0, otherwise. 

(c) (5 points) 
To find the conditional expectation and variance, first we need to determine what the condi­
tional distribution is given Y = 1/4. At Y = 1/4, we take a horizontal slice of a uniform joint 
PDF, which gives us a uniform distribution over the interval x ∈ [1/4, 3/4]. Thus, we have 

1
E[X | Y = 1/4] = ,

2

var(X | Y = 1/4) = 
(1/2)2 

=
1 

.
12 48

(d) (5 points) 
At Y = 3/4, we have a horizontal slice of the joint PDF, which is nonzero when x ∈ [0, 1/4] ∪
[3/4, 1]. Since the joint PDF is uniform, the slice will also be uniform, but only in the range 
of x where the joint PDF is nonzero (i.e. where (x, y) lies in the shaded region). Thus, the 
conditional PDF of X is 

fX|Y (x | 3/4) =	
2, x ∈ [0, 1/4] ∪ [3/4, 1], 
0, otherwise. 
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Problem 3. (25 points) 

(a) (5 points)

The recurrent states are {3,4}.


(b) (5 points) 
The 2-step transition probability from State 2 to State 4 can be found by enumerating all the 
possible sequences. They are {2 1 4} and {2 4 4}. Thus, → → → → 

1 1 1 7
P(X2 = 4 | X0 = 2) = + 1 = .

3 
· 
6 3 

· 
18

(c) (5 points)

Generally,


4

r11(n + 1) = p1j rj1(n). 
j=1 

Since states 3 and 4 are absorbing states, this expression simplifies to 

1 1 
r11(n + 1) = r11(n) + r21(n).

4 4

Alternatively, 

4

r11(n + 1) = r1k(n)pk1 

k=1 

1 1 
= r11(n) + r12(n) .· 

4 
· 
3

(d) (5 points) 
The steady-state probabilities do not exist since there is more than one recurrent class. The 
long-term state probabilities would depend on the initial state. 

(e) (5 points) 
To find the probability of being absorbed by state 4, we set up the absorption probabilities. 
Note that a4 = 1 and a3 = 0. 

1 1 1 1 
a1 = a1 + a2 + a3 + a44 4 3 6

1 1 1 
= a1 + a2 +4 4 6 

1 1 1 
a2 = a1 + a3 + a43 3 3

1 1 
= a1 +3 3 

Solving these equations yields a1 = 8
3 . 
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Problem 4. (30 points) 

(a) (5 points) 
Given the problem statement, we can treat Al, Bonnie, and Clyde’s running as 3 independent 
Poisson processes, where the arrivals correspond to lap completions and the arrival rates 
indicate the number of laps completed per hour. Since the three processes are independent, 
we can merge them to create a new process that captures the lap completions of all three 
runners. This merged process will have arrival rate λM = λA + λB + λC = 68. The total 
number of completed laps, L, over the first hour is then described by a Poisson PMF with 
λM = 68 and τ = 1: � 

68�

�
e
! 
−68 

, � = 0, 1, 2, . . . , 
pL(�) = 

0, otherwise. 

(b) (5 points) 
Let L be the total number of completed laps over the first hour, and let Ci be the number of 
cups of water consumed at the end of the ith lap. Then, the total number of cups of water 
consumed is 

L

C = Ci, 
i=1 

which is a sum of a random number of i.i.d. random variables. Thus, we can use the law of 
iterated expectations to find 

1 2 5 340
E[C] = E[E[C | L]] = E[LCi] = E[L]E[Ci] = (λM τ) · 1 · 

3 
+ 2 · 

3 
= 68 · 

3
= 

3 
. 

(c) (5 points) 
Let X be the number of laps (out of 72) after which Al drank 2 cups of water. Then, in order 
for him to drink at least 130 cups, we must have 

1 (72 − X) + 2 X ≥ 130,· · 

which implies that we need

X ≥ 58.


Now, let Xi be i.i.d. Bernoulli random variables that equal 1 if Al drank 2 cups of water 
following his ith lap and 0 if he drank 1 cup. Then 

X = X1 + X2 + + X72.· · · 

X is evidently a binomial random variable with n = 72 and p = 2/3, and the probability we 
are looking for is 

72 � � � �k � �72−k� 72 2 1
P(X ≥ 58) = 

k 3 3 
. 

k=58 

This expression is difficult to calculate, but since we’re dealing with the sum of a relatively

large number of i.i.d. random variables, we can invoke the Central Limit Theorem to approx­ 

imate this probability using a normal distribution. In particular, we can approximate X as
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a normal random variable with mean np = 72 2/3 = 48 and variance np(1 − p) = 16 and · 
approximate the desired probability as 

P(X ≥ 58) = 1 − P(X < 58) ≈ 1 − Φ 
58 √− 

16
48 

= 1 − Φ(2.5) ≈ 0.0062. 

(d) (5 points) 
The event that Al is the first to finish a lap is the same as the event that the first arrival in 
the merged process came from Al’s process. This probability is 

λA 21 
= . 

λA + λB + λC 68

(e) (5 points) 
This is an instance of the random incidence paradox, so the duration of Al’s current lap 
consists of the sum of the duration from the time of your arrival until Al’s next lap completion 
and the duration from the time of your arrival back to the time of Al’s previous lap completion. 
This is the sum of 2 independent exponential random variables with parameter λA = 21 (i.e. 
a second- order Erlang random variable): 

212te−21t , t ≥ 0,
fT (t) = 

0, otherwise. 

(f) (5 points) 
As in the previous part, the duration of Al’s second lap consists of the time remaining from 
t = 1/4 until he completes his second lap and the time elapsed since he began his second lap 
until t = 1/4. Let X be the time elapsed and Y be the time remaining. We can still model 
the time remaining Y as an exponential random variable. However, we can no longer do the 
same for the time elapsed X because we know X can be no larger than 1/4, whereas the 
exponential random variable can be arbitrarily large. 

To find the PDF of X, let’s first consider its CDF. 

P(X ≤ x) =	 P(The 1 arrival occurred less than x hours ago from time 1/4) 
P(1 arrival in the interval [1/4 − x, 1/4] and no arrivals in the interval [0, 1/4 − x])

= 
P(1 arrival in the interval [0, 1/4]) 

P(1 arrival in the interval [1/4 − x, 1/4])P(no arrivals in the interval [0, 1/4 − x])
= 

P(1 arrival in the interval [0, 1/4]) 
P(1, x)P(0, 1/4 − x)

= 
P(1, 1/4)


e−21x(21x)e−21(1/4−x)


=

e−21/4(21/4)⎧ ⎨ 0, x < 0,


= ⎩ 
4x, x ∈ [0, 1/4],

1, x > 1/4.


Thus, we find that the X is uniform over the interval [0, 1/4], with PDF 

fX (x) =	
4, x ∈ [0, 1/4], 
0, otherwise. 
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The total time that Al spends on his second lap is T = X + Y . Since X and Y correspond 
to disjoint time intervals in the Poisson process, they are independent, and therefore we can 
use convolution to find the PDF of T : 

∞ 

fT (t) = fX (x)fY (t − x) dx 
−∞� min(1/4,t) 

= 4 21e−21(t−x) dx· �0 �	 � 
4e−21t	 e21 min(1/4,t) − 1 , t ≥ 0,= 
0,	 otherwise. 

Problem 5. (25 points) 

(a) (5 points)

Using the law of iterated expectations and the law of total variance,


E[N ] = E[E[N | X]] 
= E[X] 

2 
= ,

λ

var(N) = E[var(N | X)] + var(E[N | X]) 
= E[X] + var(X) 

2 2 
=	 + ,

λ λ2 

where var(N | X) = E[N | X] = X. 

(b) (5 points) 

pN (n) = fX (x)pN |X (n | x)dx �x 

= 
∞	 λ2 

x n+1 e−(1+λ)xdx 
n!x=0 

λ2 (n + 1)! 
= 

n! 
· 
(1 + λ)n+2 

λ2(n+1) n = 0, 1, 2 . . . =	 (1+λ)n+2 

0 otherwise. 

(c) (5 points) 
The equation for X̂lin(N), the linear least-squares estimator of X based on an observation of 
N , is 

ˆ	 cov(X, N)
(N − E(N)).Xlin(N) = E[X] + 

var(N) 
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The only unknown quantity is cov(X, N) = E[XN ] − E[X]E[N ] = E[XN ] − (E[X])2 . Using 
the law of iterated expectations again, 

E[XN ] = E[E[XN | X]] 
= E[XE[N | X]] 

= E[X2] = var(X) + (E[X])2 

6 
= . 

λ2 

Thus, cov(X, N) = 6/λ2 − 4/λ2 = 2/λ2 . Combining this result with those from (a), 

X̂lin(N) = 
λ 
2

+ 2 + 
λ
2 
2 

2 

� 

N − 
λ 
2 
� 

λ λ2 

2 + N 
= .

1 + λ 

(d) (5 points) 
The expression for X̂MAP(N), the MAP estimator of X based on an observation of N is 

X̂MAP(N) = arg max n) 
x 

fX|N (x | 

= arg max 
fX (x)pN |X (n | x) 

x pN (n) 
= arg max fX (x)pN |X (n x) 

x 
| 

λ2 

= arg max x n+1 e−(1+λ)x 
x n! 

= arg max x n+1 e−(1+λ)x , 
x 

where the third equality holds since pN (n) has no dependency on x and the last equality 
holds by removing all quantities that have no dependency on x. The max can be found by 
differentiation and the result is: 

X̂MAP(N) = 
1 + N

.
1 + λ 

This is the only local extremum in the range x ∈ [0, ∞). Moreover, fX|N (x | n) equals 0 at 
x = 0 and goes to 0 as x → ∞ and fX|N (x | n) > 0 otherwise. We can therefore conclude 

that X̂MAP(N) is indeed a maximum. 

(e) (5 points) 
To minimize the probability of error, we choose the hypothesis that has the larger posterior 
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probability. We will choose the hypothesis that X = 2 if 

P(X = 2 | N = 3) > P(X = 3 | N = 3)

P(X = 2)P(N = 3 | X = 2) 

> 
P(X = 3)P(N = 3 | X = 3)


P(N = 3) P(N = 3)

P(X = 2)P(N = 3 | X = 2) > P(X = 3)P(N = 3 | X = 3)


33 23e−2 23 33e−3


>

35 
· 

3! 35 
· 

3! 
e−2 > e−3 . 

The inequality holds so we choose the hypothesis that X = 2 to minimize the probability of 
error. 

Page 7 of 7




MIT OpenCourseWare 
http://ocw.mit.edu 

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



