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Problem Set 11 Solutions 

1. Check book solutions . 

2.	 (a) To find the MAP estimate, we need to find the value x that maximizes the conditional 
density fX|Y (x | y) by taking its derivative and setting it to 0. 

fX|Y (x y) = 
pY |X(y | x) · fX(x) 

|	
pY (y) 

e−xxy 1 
= µe−µx 

y! 
· · 

pY (y) 
µ

e−(µ+1)x y=	 x
y!pY (y)

· 

d d 
� 

µ 
� 

dx 
fX|Y (x | y) = 

dx y!pY (y)
· e−(µ+1)x xy 

= 
µ

xy−1 e−(µ+1)x (y − x(µ + 1)) 
y!pY (y) 

Since the only factor that depends on x which can take on the value 0 is (y − x(µ + 1)), the 
maximum is achieved at 

x̂MAP(y) = 
y 

1 + µ 

It is easy to check that this value is indeed maximum (the first derivative changes from 
positive to negative at this value). 

(b)	 i. To show the given identity, we need to use Bayes’ rule. We first compute the denomi­
nator, pY (y) 

y� ∞ e−xx
pY (y)	 = µe−µx dx 

0 y! 

= 
µ 

� ∞
(1 + µ)y+1 xye−(1+µ)x dx 

y! (1 + µ)y+1 
0 

µ 
= 

(1 + µ)y+1 

Then, we can substitute into the equation we had derived in part (a) 

fX|Y (x | y) = 
y!pY 

µ 

(y) 
xye−(µ+1)x 

µ (1 + µ)y+1 
ye−(µ+1)x = x

y! µ 

(1 + µ)y+1 
ye−(µ+1)x = x

y! 

Thus, λ = 1 + µ. 
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ii. We first manipulate xfX|Y (x | y): 

xfX|Y (x | y) = 
(1 +

y

µ

!

)y+1 

xy+1 e−(µ+1)x 

y + 1 (1 + µ)y+2 
y+1 e−(µ+1)x = x

1 + µ (y + 1)! 

y + 1 
= 

1 + µ
fX|Y (x | y + 1) 

Now we can find the conditional expectation estimator: 

� ∞ 
x̂CE(y) = E[X|Y = y] = 

0 
xfX|Y (x | y) dx 

� ∞ y + 1 y + 1 
= 

0 1 + µ
fX|Y (x | y + 1) dx =

1 + µ 

(c) The conditional expectation estimator is always higher than the MAP estimator by 1+
1 
µ . 

3. (a) The likelihood function is 

k
P

k
� 

PTi
(Ti = ti | Q = q) = q k(1 − q) i 

ti−k . 
i=1 

To maximize the above probability we set its derivative with respect to q to zero 

k
P P

k k 

kqk−1(1 − q) i 
ti−k − (

� 
ti − k)q k(1 − q) i 

ti−k−1 = 0, 
i 

or equivalently 
k

k(1 − q) − (
� 

ti − k)q = 0, 
i 

which yields Q�k = P

k . This is not different from the MAP estimate found before. Since k


i=1
ti 
the MAP estimate is calculated using a uniform prior, the likelihood function is a ‘scaled’ 
version of posterior probability and they can be maximized at the same value of q. 

(b) Since 
1

= 

�k
i=1 Ti

, and that each Ti is independent identically distributed, it follows that 
Q�k k 

is actually a sample mean estimator. The weak law of large numbers says that, when 
Q�k 
the number of samples increases to infinity, the sample mean estimator converges to the 
actual mean, which is q 

1 
∗ in this case. So we can write the limit of probability as 

i=1 lim P 

����� 
1 1 

� �k Ti 

����� > ǫ = lim P 

������ − E[T1] 

����� > ǫ = 0. 
k→∞ Q�k 

−
q∗ k→∞ k 

1 
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(c) Chebyshev inequality states that 

i=1 
P 

������

�k Ti − E[T1] 

����� ≥ ǫ 

� 
var(T1) 

. 
k 

≤ 
kǫ2 

So we have 

P 

�����
Q�
1 

k 

−
q

1 
∗ 

� �k 

k

Ti −
q

1 
∗ 

� 
i=1 

���� ≤ 0.1 = P 

������ 

����� ≤ 0.1 

Ti var(T1)i=1 = 1 − P 

������

�k 

− E[T1] 

����� ≥ 0.1 

� 

k 
≥ 1 −

k ∗ 0.12 

To ensure the above probability to be greater than 0.95, we need that 

1 − q 

var(T1) q2 
1 −

k ∗ 0.12 
= 1 −

k ∗ 0.12 
≥ 0.95,


or


k ≥ 2000var(T1) = 2000 
1 − q


q2 

The number of observations k needed depends on the variance of T1. For q close to 1, the 
variance is close to 0, and the required number of observations is very small (close to 0). 
For q = 1/2, the variance is maximum (var(T1) = 2), and we require k = 4000. Thus, to 
guarantee the required accuracy and confidence for all q, we need that, 

k ≥ 4000. 

4. (a) Normalization of the distribution requires: 

k

θe− 

Z(θ) Z(θ) 

∞ ∞ ∞
1
 1


e− k
θ1 = pK(k; θ) = =
 =
 ,


1 
θ )
Z(θ) (1 − e−·k=0 k=0 k=0 

so Z(θ) = 1 

1−e − 1 
θ 

.


(b) Rewriting pK(k; θ) as: 

1 
θ 

�k �
1 − e− 1 

θe−pK(k; θ) k = 0, 1,
 . . .
=
 ,


the probability distribution for the photon number is a geometric probability distribution 
1 
θ , and it is shifted with 1 to the left since it starts with probability of success p = 1 − e− 

with k = 0. Therefore the photon number expectation value is 

1 1 1 
µK = 

p 
− 1
 =


1 − e− 1 − 1
 =

1 

e θ − 1θ

and its variance is 

σ2 1 − p e− 
K = 

2 
= 

1 
θ 

p (1 − e− = µ
2 K + µK .
1 
θ )2 
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(c) The joint probability distribution for the ki is 

1 1
 1
P

n 

Πn
i=1 e

−ki/θ kie−pK(k1, ..., kn; θ) =
 i=1 θ=
 .

Z(θ)n Z(θ)n 

· i=1 

�nThe log likelihood is log Z(θ) 1/θ k− −n i. 

We find the maxima of the log likelihood by setting the derivative with respect to the 

� 

parameter θ to zero: 

n1 
d e− θ 1 

log pK(k1, ..., kn; θ) ki = 0+
= −n ·

1 θ2dθ
 θ2(1 − e− θ ) i=1 

or 

n

n 

� 

e θ − 1 i=1 

θ 

1 

−1 
≈ θ, we obtain 

n

1 

1 1

ki = sn.=


1 

For a hot body, θ ≫ 1 and 
e 

1

θ ≈
 ki = sn. 

n 
i=1 

Thus the maximum likelihood estimator Θ̂n for the temperature is given in this limit by the 
sample mean of the photon number 

n

Θ̂n =
1 

Ki. 
n 

i=1 

(d) According to the central limit theorem, the sample mean approaches for large n a Gaussian 
distribution with standard deviation our root mean square error 

σK
σΘ̂n 

= √
n 

. 

To allow only for 1% relative root mean square error in the temperature, we need σK <√
n 

0.01µK . With σ2 µK 
2 + µK it follows that K = 

µK 
2 + µKσK 

= 100 = 100 1 + . 
0.01µK µK µK 

1
√
n >


In general, for large temperatures, i.e. large mean photon numbers µK ≫ 1, we need about 
10,000 samples. 

(e) The 95% confidence interval for the temperature estimate for the situation in part (d), i.e. 

σK
σΘ̂n 

= √
n 

= 0.01µK , 

is 

[K̂ − 1.96σ ˆ K̂ + 1.96σ ˆ ] = [K̂ − 0.0196µK , K̂ + 0.0196µK ].K , K
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5. (a) The sample mean estimator Θ̂n = W1+···
n 
+Wn in this case is 

Θ̂1000 =
2340 

= 2.34. 
1000


From the standard normal table, we have Φ(1.96) = 0.975, so we obtain


P 

� 
|Θ̂1000 − µ| 

� 

≈ 0.95.�
var(Wi)/1000 

≤ 1.96


Because the variance is less that 4, we have


P 
�
Θ̂1000 − µ ≤ 1.96

�
var(Wi)/1000

� 
≤ P 

�
Θ̂1000 − µ ≤ 1.96

�
4/1000

� 
, 

and letting the right-hand side of the above equation ≈ 0.95 gives a 95% confidence, i.e., 
�
Θ̂1000 − 1.96

�
4/1000, Θ̂1000 + 1.96

�
4/1000

� 
= 
�
Θ̂1000 − 0.124, Θ̂1000 + 0.124

� 
= [2.216, 2.464] 

(b) The likelihood function is 

n n

fW (w; θ) = 
� 

fWi
(wi; θ) = 

� 
θe−θwi , 

i=1 i=1 

And the log-likelihood function is 

n

log fW (w; θ) = n log θ − θ
� 

wi, 
i=1 

The derivative with respect to θ is n
θ −

�
i
n 
=1 wi,and by setting it to zero, we see that the 

maximum of log fW (w; θ) over θ ≥ 0 is attained at θ̂n = P

n 
n . The resulting estimator is 

i=1 wi 

Θ̂mle 
n = �n 

n

Wi 
. 

i=1 

In this case,


Θ̂mle =
1000 

= 0.4274.
n 2340 

6. (a) Using the regression formulas of Section 9.2, we have 

5�
(xi − x̄)(yi − ȳ) 

θ̂1 = i=1 , θ̂0 = ¯ θ̂1¯
�

(xi − x̄)2 

y − x, 
5

i=1 

where 
5 5

1 � 1 �
x̄ = xi = 4.94, ȳ = yi = 134.38. 

5 5 
i=1 i=1 

The resulting ML estimates are


θ̂1 = 40.53, θ̂0 = −65.86.


5

http:=134.38


� 

� 

� 
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(b) Using the same procedure as in part (a), we obtain 

5

(x 2 i − x̄)(yi − ȳ) 

θ̂1 
i=1 θ̂0 θ̂1¯= 

5
, = ȳ − x, 

(xi 
2 − x̄)2 

i=1 

where 
5 5�1
 12 ȳx̄
 33.60,
 yi = 134.38.
=
 xi = =


5
 5

i=1 i=1 

which for the given data yields 

θ̂1 = 4.09, θ̂0 = −3.07. 

Figure 1 shows the data points (xi, yi), i = 1, . . . , 5, the estimated linear model 

y = 40.53x − 65.86, 

and the estimated quadratic model 

y = 4.09x 2 − 3.07. 

Figure 1: Regression Plot 
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