
Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2010) 

Problem Set 9 Solutions 

1. (a)	 Yes, to 0. Applying the weak law of large numbers, we have 

P(|Ui − µ| > ǫ) → 0 as i → ∞, for all ǫ > 0 

Here µ = 0 since Xi ∼ U(−1.0, 1.0). 

(b) Yes, to 1. Since Wi ≤ 1, we have for ǫ > 0, 

lim P(|Wi − 1| > ǫ) = lim P(max{X1, · · · ,Xi} < 1 − ǫ) 
i→∞	 i→∞ 

= lim P (X1 < 1 − ǫ) · · · P (Xi < 1 − ǫ)} 
i→∞ 

= lim 
i→∞

(1 − 
ǫ 

2
)i 

= 0. 

(c) Yes, to 0. 

|Vn| ≤ min{|X1|, |X2|, · · ·, |Xn|}

but min{|X1|, |X2|, · · ·, |Xn|} converges to 0 in probability. So, since |Vn| ≥ 0, |Vn| converges

to 0 in probability. To see why min{|X1|, |X2|, · · ·, |Xn|} converges to 0 in probability, note

that:


lim P (|min{|X1|, · · · , |Xi|} − 0| > ǫ) = lim P (min{|X1|, · · · , |Xi|} > ǫ) 
i→∞	 i→∞ 

= lim P(|X1| > ǫ) · P(|X2| > ǫ) · · · P(|Xi| > ǫ) 
i→∞ 

= lim (1 + ǫ)i since |Xi| is uniform between 0 and 1 
i→∞

= 0. 

2. Consider a random variable X with PMF 
 

 
p, if x = µ − c; 

pX(x) = p, if x = µ + c; 
 

1 − 2p, if x = µ. 

The mean of X is µ, and the variance of X is 2pc2 . To make the variance equal σ2, set p = σ2

2 . 2c 
For this random variable, we have 

σ2 

P(|X − µ| ≥ c) = 2p = 
2 , c

and therefore the Chebyshev inequality is tight. 

3.	 (a) Let ti be the expected time until the state HT is reached, starting in state i, i.e., the mean 
first passage time to reach state HT starting in state i. Note that tS is the expected number 
of tosses until first observing heads directly followed by tails. We have, 

1 1 
tS =	 1 + tH + tT

2 2 
1 1 

tT = 1 + 
2 
tH + 

2 
tT 

1 
tH = 1 + 

2 
tH 
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and by solving these equations, we find that the expected number of tosses until first ob­
serving heads directly followed by tails is 

tS = 4 . 

(b) To find the expected number of additional tosses necessary to again observe heads followed 
by tails, we recognize that this is the mean recurrence time t ∗ of state HT . This can be HT 

determined as 

∗ tHT = 1 + pHT,HtH + pHT,T tT 

1 1 
= 1 + · 2 + · 4 

2 2 
= 4 . 

(c) Let’s consider a Markov chain with states S,H, T, TT , where S is a starting state, H indi­
cates heads on the current toss, T indicates tails on the current toss (without tails on the 
previous toss), and TT indicates tails over the last two tosses. The transition probabilities 
for this Markov chain are illustrated below in the state transition diagram: 

H 

T T T 

S 

2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 

1 
2 

1 

2 

Let ti be the expected time until the state TT is reached, starting in state i, i.e., the mean 
first passage time to reach state TT starting in state i. Note that tS is the expected number 
of tosses until first observing tails directly followed by tails. We have, 

1 1 
tS = 1 + tH + tT

2 2 
1 

tT = 1 + tH 

1 1 
tH = 1 + tH + tT

2 2 

and by solving these equations, we find that the expected number of tosses until first ob­
serving two consecutive tails is 

tS = 6 . 

2 

(d) To find the expected number of additional tosses necessary to again observe heads followed 
by tails, we recognize that this is the mean recurrence time t ∗ of state TT . This can be TT 
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determined as 

∗ tTT = 1 + pTT,HtH + pTT,TT tT T 

1 1 
= 1 + · 6 + · 0 

2 2 
= 4 . 

It may be surprising that the average number of tosses until the first two consecutive tails is 
greater than the average number of tosses until heads is directly followed by tails, considering 
that the mean recurrence time between pairs of tosses with heads directly followed by tails 
equals the mean recurrence time between pairs of tosses that are both tails (or equivalently, 
the long-term frequency of pairs of tosses with heads followed by tails equals the long-term 
frequency of pairs of tosses with two consecutive tails1). This is a start-up artifact. Note 
that the distribution of the first passage time to reach state HT (or TT ) starting in state 
S is the same as the conditional distribution of the recurrence time of state HT (or TT ), 
given that it is greater than 1. Although in both cases the expected values of the recurrence 
times are equal (this is what parts (b) and (d) tell us), the conditional expected values of 
the recurrence time given that it is greater than 1 is not the same in both cases (possible, 
because the unconditional distributions are not equal). 

4.	 (a) The long-term frequency of winning can be found as sum of the long-term frequency of 
transitions from 1 to 2 and 2 to 2. These can be found from the steady-state probabilities 
π1 and π2, which are known to exist as the chain is aperiodic and recurrent. The local 
balance and normalization equations are as follows: 

7 5 
π1 = π2 ,

15 9 
π1 + π2 = 1 . 

Solving these we obtain, 

25 21 
π1 = ≈ 0.54, π2 = ≈ 0.46 . 

46 46 

The probability of winning, which is the long-term frequency of the transitions from 1 to 2 
and 2 to 2, can now be found as 

25 7	 21 4 21 
P(winning) = π1p12 + π2p22 = + = ≈ 0.46 . 

46 15 46 9 46


Note that from the balance equation for state 2,


π2 = π1p12 + π2p22 , 

the long-term probability of winning always equals π2. 

(b) This question is one of determining the probability of absorption into the recurrent class 
{1A, 2A}. This probability of absorption can be found by recognizing that it will be the 
ratio of probabilities 

2 p1,1A 15 2 
= = 

p1,1A + p1,1B 
2 + 1 3 

. 
15 15 

See problem 7.34 on page 399 of the text for a detailed explanation of this correspondence between mean recurrence 
times and steady-state probabilities. 
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1 

More methodically, if we define ai as the probability of being absorbed into the class 
{1A, 2A}, starting in state i, we can solve for the ai by solving the system of equations 

a1 = p1,1A + p11a1 + p12a2 

2 7 
= + a1 + a2

15 3 15 
a2 =	 p21a1 + p22a2 

5 4 
= a1 + a2 ,

9 9 

p1,1A 2from which we determine that a1 = 
p1,1A+p1,1B 

= 3 . 

(c) Let A,B be the events that Jack eventually plays with decks 1A & 2A, 1B & 2B, respectively, 
when starting in state 1. From part (b), we know that P(A) = a1 = 3

2 and P(B) = 1−a1 = 
1 
3 . The probability of winning can be determined as 

P(winning) = P(winning|A)P(A) + P(winning|B)P(B) . 

By considering the corresponding the appropriate recurrent class and solving a problem 
similar to part (a), P(winning|A) and P(winning|B) can be determined; in these cases, the 
steady-state probabilities of each recurrent class are defined under the assumption of being 
absorbed into that particular recurrent class. Let’s begin with P(winning|A). The local 
balance and normalization equations for the recurrent class {1A, 2A} are 

3 1 
π1A = π2A ,

5 5 
π1A + π2A = 1 . 

Solving these we obtain,

1 3


π1A = , π2A = ,
4 4


and hence conclude that


3 
P(winning|A) = p1A,2Aπ1A + p2A,2Aπ2A = π2A = . 

4 

Similarly, the local balance and normalization equations for the recurrent class {1B, 2B} 
are 

3 1 
π1B = π2B ,

4 8 
π1B + π2B = 1 . 

Solving these we obtain,

1 6

, π2B = ,π1B = 

7 7


and hence conclude that


6 
P(winning|B) = p1B,2Bπ1B + p2B,2Bπ2B = π2B = . 

7 
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Putting these pieces together, we have that 

P(winning) =	 P(winning|A)P(A) + P(winning|B)P(B) 

3 2 6 1 
= · + · 

4 3 7 3 
11 

= ≈ 0.79 ,
14 

meaning that Jack substantially increases the odds to his favor by slipping additional cards 
into the decks. 

(d) The expected time until Jack slips cards into the deck is the same as the expected time until 
the Markov chain enters a recurrent state. Let µi be the expected amount of time until a 
recurrent state is reached from state i. We have the equations 

1 7 
µ1 = 1 + p11µ1 + p12µ2 = 1 + µ1 + µ2

3 15
5 4 

µ2 = 1 + p21µ1 + p22µ2 = 1 + µ1 + µ2 ,
9 9

which when solved, yields the expected time until Jack slips cards into the deck, 

µ1 = 9.2 . 

(e) Let S be the number of times that the dealer switches from deck #2 to deck #1, which 
equals the number of times that he/she switches from deck #1 to deck #2. Let p be the 
probability that S = 0, which is the sum of the probability of all ways for the first change 
of state to be from state 1 to state 1A or state 1B, 

� � �	 �� � � �2 � � 

2 1 1 2 1 1 2 1 1 3 
p = + + + + + + . . . = · = . 

15 15 3 15 15 3 15 15 1 − 1/3 15 10 

Alternatively, p is the probability of absorption of the following modified chain into an 
absorbing state (1A or 1B), when started in state 1: 

7 
15 

1
1 
3 1 2 

(win) 
(loss) 

1 1A 

1 1B 

2 
15

(loss) 

1 
15

(loss) 

As P(S > 0) = 1 − p, and similarly, P(S > k + 1|S > k) = 1 − p, it should be clear that S 
will be a shifted geometric, and thus 

7 
�k 3 

pS(k) = k = 0, 1, 2, . . . . 
10 10 
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(f) Note that S from part (e) is the total number of cycles from 1 to 2 and back to 1. During 
the ith cycle, the number of wins, Wi, is a geometric random variable with parameter q = 9

5 . 
Thus the total number of wins by Jack before he slips extra cards into the deck is 

W = W1 + W2 + . . . + WS , 

which is a random number of random variables, all of which are independent. Conditioned 
on S > 0, W is a geometric (with parameter p) number of geometric (with parameter 
q) random variables, all conditionally independent, and thus from the theory of splitting 
Bernoulli processes, 

pW |S>0(k) = (1 − pq)k−1 pq k = 1, 2, . . . , 

where pq = 3 · 5 = 6
1 . When S = 0, it follows that W = 0, and thus by total probability, 10 9 

3 k = 0 
pW (k) = 10 

7 )k−1 1 . 
(10 )(

5
6 6 k = 1, 2, . . . . 

(g) Let W be the total number of wins before slipping cards into the deck (as in part (f)), and 
similarly let L be the total number of losses before absorption. We know from part (d) that 
E[W + L] = µ1 = 9.2. From part (f) we can find E[W ] by total expectation, 

7/10 42 
E[W ] = E[W |S = 0]P(S = 0) + E[W |S > 0]P(S > 0) = = = 4.2 ,

1/6 10 

because when conditioned on S > 0, the number of wins, W , is a geometric random variable 
with parameter pq = 6

1 . From linearity of expectation, we find 

E[L − W ] = E[W + L] − 2E[W ] = 9.2 − 2 · 4.2 = 0.8 . 

(h) Using A to again denote the probability of being absorbed into the recurrent class {1A, 2A}, 
starting in state 1, 

P(Xn+1 = 1A|Xn = 2A)P(Xn = 2A)
P(Xn = 2A|Xn+1 = 1A) = 

P(Xn+1 = 1A) 

P(Xn+1 = 1A|Xn = 2A)P(Xn = 2A|A)P(A) 
= 

P(Xn+1 = 1A|A)P(A) 
p2A,1Aπ2A

≈ 
π1A 

1 3 · 5 4= 1 
4 

3 
= . 

5 

Note that the right hand side above equals p1A,2A, as clear from the local balance equation 
π1Ap1A,2A = π2Ap2A,1A. 
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G1† . With a > 0 and c ≥ 0, 

P (X − µ ≥ a) = P (X − µ + c ≥ a + c) 

≤ P 
� 

(X − µ + c)2 ≥ (a + c)2
� 

E 
� 

(X − µ + c)2
� 

≤ 
(a + c)2 

(σ2 + c2) 
= 

(a + c)2 

where the first inequality follows from the fact that a + c > 0, and the second inequality follows

from the Markov inequality.

To tighten the bound, we treat (σ2 + c2)/(a + c)2 as a function of c, and find c such that the

derivative is 0. The minimum occurs at c = σ2/a. Therefore,


(σ2 + (σ
a2

4 ) ) σ2 

P (X − µ ≥ a) ≤ 
(a + σ

a 

2 
)2 

=
(σ2 + a2) 

†Required for 6.431; optional challenge problem for 6.041 Page 7 of 7 
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