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1. Oscar goes for a run each morning. When he leaves his house for his run, he is equally likely to 
go out either the front or back door; and similarly, when he returns, he is equally likely to go 
to either the front or back door. Oscar owns only five pairs of running shoes which he takes off 
immediately after the run at whichever door he happens to be. If there are no shoes at the door 
from which he leaves to go running, he runs barefooted. We are interested in determining the 
long-term proportion of time that he runs barefooted. 

(a) Set the scenario up as a Markov chain, specifying the states and transition probabilities. 

(b) Determine the long-run proportion of time Oscar runs barefooted. 

2. Consider a Markov chain X1, X2, . . . modeling a symmetric simple random walk with barriers, as 
shown below: 
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(a) Explain why |X1|, |X2|, |X3|, . . . also satisfies the Markov property and draw the associated 
chain. 

(b) Suppose that we also wish to keep track of the largest deviation from the origin, i.e., define 
the largest deviation at time t as Yt = max{|X1|, |X2|, . . . , |Xt|}. Draw a Markov chain that 
keeps track of the largest deviation and explain why it satisfies the Markov property. 

3. As flu season is upon us, we wish to have a Markov chain that models the spread of a flu 
virus. Assume a population of n individuals. At the beginning of each day, each individual 
is either infected or susceptible (capable of contracting the flu). Suppose that each pair (i, j), 
i 6 j, independently comes into contact with one another during the daytime with probability p.= 
Whenever an infected individual comes into contact with a susceptible individual, he/she infects 
him/her. In addition, assume that overnight, any individual who has been infected for at least 
24 hours will recover with probability 0 < q < 1 and return to being susceptible, independently 
of everything else (i.e., assume that a newly infected individual will spend at least one restless 
night battling the flu). 

(a) Suppose that there are m infected individuals at daybreak. What is the distribution of the 
number of new infections by day end? 

(b) Draw a Markov chain with as few states as possible to model the spread of the flu for n = 2. 
In epidemiology, this is called an SIS (Susceptible-Infected-Susceptible) model. 

(c) Identify all recurrent states. 

Due to the nature of the flu virus, individuals almost always develop immunity after contracting 
the virus. Consequently, we improve our model and assume that individuals become infected at 
most one time. Thus, we consider individuals as either infected, susceptible, or recovered. 
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(d) Draw a Markov chain to model the spread of the flu for n = 2. In epidemiology, this is 
called an SIR (Susceptible-Infected-Recovered) model. 

(e) Identify all recurrent states. 

4. Consider the Markov chain below. For all parts of this problem, the process is in state 3 imme­
diately before the first transition. Be sure to comment on any unusual results. 
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(a) Find the variance for J , the number of transitions up to and including the transition on 
which the process leaves state 3 for the last time. 

(b) Find the expectation for K, the number of transitions up to and including the transition 
on which the process enters state 4 for the first time. 

(c) Find πi for i = 1, 2, . . . , 7, the probability that the process is in state i after 1010 transitions. 

(d) Given that the process never enters state 4, find the πi’s as defined in part (c). 

G1† .	 Consider a Markov chain {Xk} on the state space {1, . . . , n}, and suppose that whenever the 
state is i, a reward g(i) is obtained. Let Rk be the total reward obtained over the time interval 
{0, 1, . . . , k}, that is, Rk = g(X0) + g(X1) + · · · + g(Xk). For every state i, let 

mk(i) = E[Rk | X0 = i], 

and

vk(i) = var(Rk | X0 = i)


respectively be the conditional mean and conditional variance of Rk, conditioned on the initial 
state being i. 

(a) Find a recursion that, given the values of mk(1), . . . , mk(n), allows the computation of 
mk+1(1), . . . , mk+1(n). 

(b) Find a recursion that, given the values of mk(1), . . . , mk(n) and vk(1), . . . , vk(n), allows the 
computation of vk+1(1), . . . , vk+1(n). Hint : Use the law of total variance. 

†Required for 6.431; optional for 6.041	 Page 2 of 2 



MIT OpenCourseWare
http://ocw.mit.edu 

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability
Fall 2010

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



