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Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Fall 2010) 

Problem Set 1: Solutions 
Due: September 15, 2010 

1. (a) A ∪ B ∪ C 

(b) (A ∩ Bc ∩ Cc) ∪ (Ac ∩ B ∩ Cc) ∪ (Ac ∩ Bc ∩ C) ∪ (Ac ∩ Bc ∩ Cc) 

(c) (A ∪ B ∪ C)c = Ac ∩ Bc ∩ Cc 

(d) A ∩ B ∩ C 

(e) (A ∩ Bc ∩ Cc) ∪ (Ac ∩ B ∩ Cc) ∪ (Ac ∩ Bc ∩ C) 

(f) A ∩ B ∩ Cc 

(g) A ∪ (Ac ∩ Bc) 
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2. Since all outcomes are equally likely we apply the discrete uniform probability law to solve 
the problem. To solve for any event we simply count the number of elements in the event 
and divide by the total number of elements in the sample space. 

There are 2 possible outcomes for each flip, and 3 flips. Thus there are 23 = 8 elements (or 
sequences) in the sample space. 

(a) Any sequence has probability of 1/8. Therefore P({H, H, H}) = 1/8 . 

(b) This is still a single sequence, thus P({H, T, H}) = 1/8 . 

(c) The event of interest has 3 unique sequences, thus P({HHT, HTH, THH}) = 3/8 . 

(d) The sequences where there are more heads than tails are A : {HHH, HHT, HTH, THH}. 

4 unique sequences gives us P(A) = 1/2 . 

3. The easiest way to solve this problem is to make a table of some sort, similar to the one 
below. 
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P(Sum)
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P(All outcomes) = 80p (Total from the table)


and therefore

1 

p = 
80 

(a)


P(Even sum) = 2p + 4p + 4p + 6p + 4p + 6p + 6p + 8p = 40p =
 1/2 

(b)


P(Rolling a 2 and a 3) = P(2, 3) + P(3, 2) = 5p + 5p = 10p =
 1/8 

4. P(B) 

The shaded area in the following figure is the union of Alice’s pick being greater than 1/3 
and Bob’s pick being greater than 1/3. 
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P(B) = 1 − P(both numbers are smaller than 1/3) 

area of small square 
= 1 − 

total sample area 

(1/3)(1/3) 1 
= 1 − = 1 − = 35/36 

4 36 

P(C) 

In the following figure, the diagonal line represents the set of points where the two selected 
numbers are equal. 
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The line has an area of 0. Thus, 

area of line 0 
P(C) = = = 0 

total sample area 4 

P(A ∩ D) 

Overlapping the diagrams we would get for P(A) and P(D), 
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double shaded area 
P(A ∩ D) = 

total sample area 

(5/3)(5/3)(1/2) + (4/3)(4/3)(1/2) 25/18 + 16/18 
= = = 41/72 

4 4 

5. (a) The probability of Mike scoring 50 points is proportional to the area of the inner disk. 
Hence, it is equal to απR2 = απ, where α is a constant to be determined. 

Since the probability of landing the dart on the board is equal to one, απ102 = 1, which 
implies that α = 1/(100π). 

Therefore, the probability that Mike scores 50 points is equal to π/(100π) = 0.01 

(b) In order to score exactly 30 points, Mike needs to place the dart between 1 and 3 inches 
from the origin. An easy way to compute this probability is to look first at that of 
scoring more than 30 points, which is equal to απ32 = 0.09. 

Next, since the 30 points ring is disjoint from the 50 points disc, probability of scoring 
more than 30 points is equal to the probability of scoring 50 points plus that of scoring 
exactly 30 points. Hence, the probability of Mike scoring exactly 30 points is equal to 
0.09 − 0.01 = 0.08 

(c) For the part (a) question. The probability of John scoring 50 points is equal to the 
probability of throwing in the right half of the board and scoring 50 points plus that of 
throwing in the left half and scoring 50 points. 

The first term in the sum is proportional to the area of the right half of the inner disk

and is equal to απR2/2 = απ/2, where α is a constant to be determined.


Similarly, the probability of him throwing in the left half of the board and scoring 50

points is equal to βπ/2, where β is a constant (not necessarily equal to α).


In order to determine α and β, let us compute the probability of throwing the dart in 
the right half of the board. This probability is equal to 

απR2/2 = απ102/2 = α50π. 

Since that probability is equal to 2/3, α = 1/(75π). In a similar fashion, β can be 
determined to be 1/(150π). Consequently, the total probability is equal to 1/150 + 
1/300 = 0.01 

For the part (b), The probability of scoring exactly 30 points is equal to that of scoring 
more than 30 points minus that of scoring exactly 50. By applying the same type of 
analysis as in (b) above, the probability is found to be equal to 0.08 

These numbers suggest that John and Mike have similar skills, and are equally likely 
to win the game. The fact that Mike’s better control (or worst, depending on how you 
look at it) of the direction of his throw does not increase his chances of winning can be 
explained by the observation that both players’ control over the distance from the origin 
is identical. 

6. See the textbook, Problem 1.11 page 55, which proves the general version of Bonferroni’s 
inequality. 

G1† . (a) If we define An = [an, bn] for all n, it is easy to see that the sequence A1, A2, . . . is 
“monotonically decreasing,” i.e., An+1 ⊂ An for all n: 
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Omega 

. . . An 
A3A2 

A1 

Furthermore, ∩∞ 
n An = [a, b].


By the continuity property of probabilities (see Problem 1.13, page 56 of the text),


lim P([an, bn]) = P([a, b]). 
n→∞ 

(b) No. Consider the following example. Let an = a + 
n 
1 , bn = b − 

n 
1 for all n. Then {an} 

is a decreasing sequence that converges to a, and {bn} is an increasing sequence that 
converges to b. If we define a probability law that places non-zero probability only on 
points a and b, then limn→∞ P([an, bn]) = 0, but P([a, b]) = 1. 

This example is closely related to the continuity property of probabilities. In this case, if 
we define An = [an, bn], then A1, A2, . . . is “monotonically increasing,” i.e., An ⊂ An+1, 
but A = (∪∞ 

n An) = (a, b), which is an open interval whose probability is 0 under our 
probability law. 
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