6.035
Project 1:

Scanner/Parser

Jason Ansel

Spring 2010 — Massachusetts Institute of Technology



Your Background

= What are your past experiences with...

= Regular expressions?
= Context free grammars?
= Lexers/Parsers?

= Compilers?



My Responsibilities

Help you
Grading (hopetully largely automated)

= I will try to release my grading scripts

= Make sure your code works with them

Office hours?

Group meetings? (For projects 2-5)



Grading

= 60% Projects

= 5% P1 (you are here)
7.5% P2

= 10% P3

= 7.5% P4

= 30% PS5
= 30% Quizzes

= 10% Mini-Quizzes (each lecture, 2 so far)




Grading (Project 1)

= 75% Automated testing

= About half of the test cases provided to you
= 25% of grade

= Other half hidden
= 50% of grade

= 25% Write-up / Documentation / Code Design

= More attention given when automated tests fail

= 2-4 pages for first project



Many disciplines are employed in a compiler

Bridge abstraction layers
Between high-level language and architecture

Become more efficient programmers
Learn to design and use some useful tools
Language recognition
Tree manipulation
Pattern recognition

Optimization and parallelization frameworks

Build a large project in a team (Proj 2-5)



Design a complete optimizing compiler for our
Decaf Language targeting x86-64.

Open-ended

Except for first phase you are not going to be given
much.

The design process 1s a very important aspect.

Bad designs 1n early projects will come back to hurt you
later.

Compiler competition at the end of the semester.



Decaf Language

* Simple Imperative Programming Language
= Array, expressions, methods, control flow

= No: pointers, classes, floating point
= Sort of like simplified fortran/pascal

= Easier to optimize than more complex language



Lexical Analysis
(Scanning)

= Covert stream of input characters into tokens.

= Each token 1s created without memory of previous tokens
= A token 1s treated as a unit by later passes.

* The scanner will:

= Discard whitespace (not in a string or char literal)

= Denote keywords, integer literals, string and char literals
(using delimiters), operators, and 1dentifiers.

" Report sensible errors for lexically malformed programs.
(ANTLR errors mostly OK)

= Traditional tools: lex (unix), flex (gnu rewrite/expansion)



Lexical Analysis

= Example:
class Program { void main () {} }

TK class ID(“Program”) LCURLY

TK void ID(™main”) LPAREN RPAREN
LCURLY RCURLY RCURLY

= Don't generate the scanner by hand, use a
scanner generator!



Convert stream of tokens into syntax tree

Expressed as context free grammar

Converted (by ANTLR) into state machine with stack
Uses fixed lookahead ('k' in ANTLR)

Traditional tools: yacc (unix), bison (gnu rewrite/expansion)



Provided Code / Tools

Optional...

= but use some lexer/paser generator

Java / Ant / Eclipse
ANTLR (http://www.antlr.org/)

= Plenty of documentation online

See me 1f you get stuck!


http://www.antlr.org/

Eliminating Conflicts

Intuition: The parser does not know what to do given the tokens
already seen and the next tokens (lookahead).

Increasing k can fix some problems (use with caution: k=1, 2, or
3 1s sufficient, much higher than that may indicate bad grammar)

To investigate the source of the contlict you should look at the
parser states

To enable output of parse states in ANTLR, see the ant build
file.



Code to execute for a rule.

Executed after the preceding terminal / non-
terminal in the rule 1s recognized.

A value can be passed “up” to the enclosing
rule.

For terminals: Value the scanner associated with
the terminal 1s accessible.

program : TK class name:ID
{System.out.println ("got id: " +
name.getText () ), } LCURLY RCURLY;



Shift/Reduce Conflicts

Consider this grammar:
expr:
stmt: 1f_stmt] ...
if_stmt: IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

What 1s the conflict/ambiguity?



Shift/Reduce Conflicts

= 1f(x) 1f(y) win(); else lose();
= Either:

- if(x){ if(y) win(); else lose(); } (shift)

= 1f(x){ 1f(y) win(); } else lose(); (reduce)
= Most parsers generators default to shift

= Have directives to change this behavior

= Throw noisy warnings...



Reduce/Reduce Conflicts

= Consider this grammar
list: /*empty™/
| maybeword
| list word
maybeword: /*empty*/
| word

What is the conflict/ambiguity?



Reduce/Reduce Conflicts

= list — /*empty™/

= list — maybeword — /*empty*/

= Try to create a grammar without conftlicts

= Conflict makes life harder



Other Questions?



MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu/terms
http://ocw.mit.edu

