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Extend your compiler to find, report, and recover from semantic errors in Decaf programs. Most 
semantic errors can be checked by testing the rules enumerated in the section “Semantic Rules” of 
Decaf Spec. These rules are repeated in this handout as well. However, you should read Decaf Spec 
in its entirety to make sure that your compiler catches all semantic errors implied by the language 
definition. We have attempted to provide a precise statement of the semantic rules. If you feel some 
semantic rule in the language definition may have multiple interpretations, you should work with 
the interpretation that sounds most reasonable to you and clearly list your assumptions in your 
project documentation

This part of the project includes the following tasks: 

1. 	 Create a high-level intermediate representation (IR) tree. You can do this either by instructing 
ANTLR to create one for you, adding actions to your grammar to build a tree, or walking a 
generic ANTLR tree and building a tree on the way. The problem of designing an IR will be 
discussed in the lectures; some hints are given in the final section of this handout. 

When running in debug mode, your driver should pretty-print the constructed IR tree in 
some easily-readable form suitable for debugging. 

2. 	 Build symbol tables for the classes.	 (A symbol table is an environment, i.e. a mapping from 
identifiers to semantic objects such as variable declarations. Environments are structured 
hierarchically, in parallel with source-level constructs, such as class-bodies, method-bodies, 
loop-bodies, etc.) 

3. Perform all semantic checks by traversing the IR and accessing the symbol tables. Note: the 
run-time checks are not required for this assignment. 

What to Hand In 

Follow the directions given in project overview handout when writing up your project. Your 
design documentation should include a description of how your IR and symbol table structures are 
organized, as well as a discussion of your design for performing the semantic checks. 

Each group will be assigned an athena group and shared space in the course locker. Each group 
must place their completed submission at: 

/mit/6.035/group/GROUP/submit/GROUP-semantics.tar.gz 

Groups may use: 
/mit/6.035/group/GROUP/ 

as a place to collaborate and share code. It is recommended that you use revision control and place
 
your repositories in this shared space.
 

Submitted tarballs should have the following structure:
 

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 
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GROUPNAME-semantics.tar.gz
 
|
 
‘-- GROUPNAME-semantics
 

|
 
|-- AUTHORS (list of students in your group, one per line)
 
|
 
|-- code
 
| | 
| ... (full source code, can build by running ‘ant‘) 
| 
|-- doc 
| | 
| ... (write-up, described in project overview handout) 
| 
‘-- dist
 

|
 
‘-- Compiler.jar (compiled output, for automated testing)
 

You should be able to run your compiler from the command line with: 

java -jar dist/Compiler.jar -target inter <filename>
 

The resulting output to the terminal should be a report of all errors encountered while compiling 
the file. Your compiler should give reasonable and specific error messages (with line and column 
numbers and identifier names) for all errors detected. It should avoid reporting multiple error 
messages for the same error. For example, if y has not been declared in the assignment statement 
“x=y+1;”, the compiler should report only one error message for y, rather than one error message 
for y, another error message for the +, and yet another error message for the assignment. 

After you implement the static semantic checker, your compiler should be able to detect and report 
all static (i.e., compile-time) errors in any input Decaf program, including lexical and syntax errors 
detected by previous phases of the compiler. In addition, your compiler should not report any 
messages for valid Decaf programs. However, we do not expect you to avoid reporting spurious 
error messages that get triggered by error recovery. It is possible that your compiler might mistak­
enly report spurious semantic errors in some cases depending on the effectiveness of your parser’s 
syntactic error recovery. 

As mentioned, your compiler should have a debug mode in which the IR and symbol table data 
structures constructed by your compiler are printed in some form. This can be run from the 
command line by 

java -jar dist/Compiler.jar -target inter -debug <filename>
 

Test Cases 

The test cases provided for this project are in: 

/mit/6.035/provided/semantics/
 

Read the comments in the test cases to see what we expect your compiler to do. Points will be 
awarded based on how well your compiler performs on these and hidden tests cases. Complete 
documentation is also required for full credit. 
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Grading Script 

As with the previous project, we are providing you with the grading script we will use to test your 
code (except for the write-up). This script only shows you results for the public test cases. 

The script can be found on athena in the course locker: 

/mit/6.035/provided/gradingscripts/p2grader.py 

The script takes your tarball as the only arg: 

/mit/6.035/provided/gradingscripts/p2grader.py GROUPNAME-parser.tar.gz 

Or it works on the extracted directory: 

/mit/6.035/provided/gradingscripts/p2grader.py GROUPNAME-parser/ 

Please test your submission against this script. It may help you debug your code and it will help 
make the grading process go more smoothly. 

Semantic Rules 

These rules place additional constraints on the set of valid Decaf programs besides the constraints 
implied by the grammar. A program that is grammatically well-formed and does not violate any 
of the following rules is called a legal program. A robust compiler will explicitly check each of 
these rules, and will generate an error message describing each violation it is able to find. A robust 
compiler will generate at least one error message for each illegal program, but will generate no 
errors for a legal program. 

1. 	 No identifier is declared twice in the same scope. 

2. 	 No identifier is used before it is declared. 

3. 	 The program contains a definition for a method called main that has no parameters (note 
that since execution starts at method main, any methods defined after main will never be 
executed). 

4. 	 The �int literal� in an array declaration must be greater than 0. 

5. 	 The number and types of arguments in a method call must be the same as the number and 
types of the formals, i.e., the signatures must be identical. 

6. 	 If a method call is used as an expression, the method must return a result. 

7. 	 A return statement must not have a return value unless it appears in the body of a method 
that is declared to return a value. 

8. 	 The expression in a return statement must have the same type as the declared result type 
of the enclosing method definition. 

9. 	 An �id� used as a �location� must name a declared local/global variable or formal parameter. 
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10. For all locations of the form �id�[�expr�] 

(a) �id� must be an array variable, and 

(b) the type of �expr� must be int. 

11. The �expr� in an if statement must have type boolean. 

12. The operands of �arith op�s and �rel op�s must have type int. 

13. The operands of �eq op�s must have the same type, either int or boolean. 

14. The operands of �cond op�s and the operand of logical not (!) must have type boolean. 

15. The �location� and the �expr� in an assignment, �location� = �expr�, must have the same type. 

16. The �location� and the �expr� in an incrementing/decrementing assignment, �location� += �expr� 
and �location� -= �expr�, must be of type int. 

17. The initial �expr� and the ending �expr� of for must have type int. 

18. All break and continue statements must be contained within the body of a for. 

Implementation Suggestions 

•	 You will need to declare classes for each of the nodes in your IR. In many places, the hierarchy 
of IR node classes will resemble the language grammar. For example, a part of your inheritance 
tree might look like this (where indentation represents inheritance): 

abstract class Ir
 
abstract class IrExpression

abstract class IrLiteral


class IrIntLiteral

class IrBooleanLiteral

class IrCallExpr

class IrMethodCallExpr

class IrCalloutExpr

class IrBinopExpr


abstract	 class IrStatement

class IrAssignStmt

class IrPlusAssignStmt

class IrBreakStmt

class IrContinueStmt

class IrIfStmt

class IrForStmt

class IrReturnStmt

class IrInvokeStmt

class IrBlock

class IrClassDecl


abstract	 class IrMemberDecl

class IrMethodDecl

class IrFieldDecl

.
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.
 

.
 
class IrVarDecl
 
class IrType
 

Classes such as these implement the abstract syntax tree of the input program. In its simplest 
form, each class is simply a tuple of its subtrees, for example: 

public class IrBinopExpr extends IrExpression
 
{
 

private final int operator; |
 
private final IrExpression lhs; +
 
private final IrExpression rhs; / \
 

}	 lhs rhs
 

or: 

public class IrAssignStmt extends IrStatement
 
{ :=
 

private final IrLocation lhs; / \
 
private final IrExpression rhs; lhs rhs
 

}
 

In addition, you’ll need to define classes for the semantic entities of the program, which 
represent abstract properties (e.g. expression types, method signatures, class descriptors, 
etc.) and to establish the correspondences between them. Some examples: every expression 
has a type; every variable declaration introduces a variable; every block defines a scope. Many 
of these properties are derived by recursive traversals over the tree. 

As far as possible, you should try to make instances of the the symbol classes canonical, so 
that they may be compared using reference equality. You are strongly advised to design these 
classes with care, employing good software-engineering practice and documenting them, as 
you will be living with them for the next few months! 

•	 All error messages should be accompanied by the filename, line and column number of the 
token most relevant to the error message (use your judgement here). This means that, when 
building your abstract-syntax tree (or AST), you must ensure that each IR node contains 
sufficient information for you to determine its line number at some later time. 

It is not appropriate to throw an exception when encountering an error in the input: doing 
so would lead to a design in which at most one error message is reported for each run of the 
compiler. A good front-end saves the user time by reporting multiple errors before stopping, 
allowing the programmer to make several corrections before having to restart compilation. 

•	 Semantic checking should be done top-down. While the type-checking component of seman­
tic checking can be done in bottom-up fashion, other kinds of checks (for example, detecting 
uses of undefined variables) can not. 

There are two ways of achieving this. The first is to make use of parser actions in the middle 
of productions. This approach may require less code but can be more complex, because more 
work needs to be done directly within the ANTLR infrastructure. 

A cleaner approach is to invoke your semantic checker on a complete AST after parsing has 
finished. The pseudocode for block in this approach would resemble this: 
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void checkBlock(EnvStack envs, Block b) {
 
envs.push(new Env());
 
foreach s in b.statements
 

checkStatement(envs, s);
 
envs.pop();
 

}
 

In this pseudocode, a new environment is created and pushed on the environment stack, the 
body of the block is then checked in the context of this environment stack, and then the new 
environment is discarded when the end of the block is reached. 

The semantic check can thus be expressed as a visitor (which should be familiar from Design 
Patterns or 6.170) over the AST. (Since code generation, certain optimizations, and pretty­
printing can also be naturally expressed as visitors, we recommend this approach for a cleaner 
implementation.) 

•	 The treatment of negative integer literals requires some care. Recall from the previous hand­
out that negative integer literals are in fact two separate tokens: the positive integer literal 
and a preceding ‘-’. Whenever your top-down semantic checker finds a unary minus operator, 
it should check if its operand is a positive integer literal, and if so, replace the subtree (both 
nodes) by a single, negative integer literal. 
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