Spring 2010

Parallelization

Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Outline

e \Why Parallelism
e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Moore’s Law

. 1,000,000,000
Itanium 2

100,000,000

10,000,000

1,000,000

sJojsisuel| Jo JaquinN

100,000

10,000
,1 84980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 20102012 2014 2016

Uniprocessor Performance (SPECint)

100000 -

10000

-
o
o
o

Y
o
o

g
:
g
E

-
o

1

1978 1080 1982 1684 1686 1688 1990 1902 1864 1606 1838 2000 2002 2004 2006 2008 2010 2012 2014 2016

Multicores Are Here!

Picochip Ampric
PC102 AA A \M2045

Cisco
CSR-lA
Intel
Tflops
A

Raza Cavium

XLR Octeon

A A
X X

Niagara A AcCell

Opteron 4P

Boardcom 1480
NN Xeon-MP

Xbox360

PA-8800 opteron Tanglewood
POWEIA Ao AN AN Ao
PExtreme Power6
Yonah

A A& AA

1970 1975 1980 1985 1990 1995 2000 2005 2077

Issues with Parallelism

e Amdhal’s Law

— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

— T(n) = Ts + Tp/n
— T() = Ts, thus maximum speedup (Ts + Tp) /Ts

e |Load Balancing

— The work is distributed among processors so that a// processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).

Outline

e Parallel Execution

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

—> Recursive functions

Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze

Programmer Defined Parallel Loop

e FORALL e FORACROSS

— No “loop carried — Some “loop carried
dependences” dependences”

— Fully parallel

Parallel Execution

e Example
FORPAR I = O to N
A[I1] = A[1] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[l] = A[l] + 1

e SPMD (Single Program, Multiple Data) Code
1f(myPid == 0) {

Iters = ceiling(N/NUMPROC) ;
+

Barrier();

FOR I = myPid*lIters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

Barrier();

Parallel Execution

e Example
FORPAR I = O to N
A[I1] = A[1] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR 1 = P*Iters to MIN((P+1)*Iters, N)
A[l] = A[l] + 1

e Code fork a function
Iters = ceiling(N/NUMPROC) ;
ParallelExecute(funcl);

void funcl(integer myPid)
{
FOR I = myPid*lIters to MIN((myPid+1)*Iters, N)
A[I] = A[l] + 1
+

Parallel Execution

e SPMD

— Need to get all the processors execute the
control flow

e Extra synchronization overhead or redundant
computation on all processors or both

— Stack: Private or Shared?

e Fork

— Local variables not visible within the function

e Either make the variables used/defined in the loop
body global or pass and return them as arguments

e Function call overhead

Parallel Thread Basics

e Create separate threads

— Create an OS thread

e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— Qverhead in thread creation

e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done

Outline

e Parallelizing Compilers

e Dependence Analysis

e Increasing Parallelization Opportunities

Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples
FOR I = 0 to 5
A[1T = A[I1] + 1

FOR1 =0 to 5
A[1] = A[1+6] + 1

For I = 0 to 5
A[2*1] = A[2*1I + 1] + 1

Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

2 5
FOR I = 0 to 6 O—0O—0—0
FOR J =1 to 7

)Y
&

6 S
e Iterations are represented as coordinates in iteration space

— |__ [ill iz, i3,..., |n]

Iteration Space

N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

< J

O O O
\ 4 \ 4 J 4 A 4

DY Y Y
v 7 7 4 J

D).).
4 4 4 4

D
4

D). 6
4 &

7/
O
—0
O
O
O
O

))Y
4 \ 4

6 o—o©
e Iterations are represented as coordinates in iteration space

e Sequential execution order of iterations =» Lexicographic order
[0,0], [O,1], [O,2], ..., [O,6], [&7;]

[1I1]I [1I2]I R 4 [1I6]I
[2,2], ..., [2,6], [2,7],

[6,6], [6,7],

Iteration Space

N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

12 5 < J

DY Y
4 4

D).
4

@
\ 4

7/
O
—0
O
O
O
O

)Y
&

6 o—o©
e Iterations are represented as coordinates in iteration space
° Sequential execution order of iterations =» Lexicographic order

o Iterationi is lexicograpically less than] i <jiff
there exists c s.t. iy = j;, I = Jyeee Iy = g @Nd i < e

Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

< J

2 5 /
FOR 1 = 0 to 6 O—O0—0—0 0
FOR J =1 to 7 O
O
O
O
O

o
e An affine loop nest

— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes

Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

\ 5

FOR I = 0 to 6 0°S —o—9

/
19
_ 1 O
FOR J =1 to 7
) —O—O0—0—0
O
O
e)
O

[23 L o oo
4) 0—@
5 O
6 O
N
o Affine loop nest - Iteration space as a set of liner inequalities
0<I
I<6
I1<]
J<7

Data Space

e M dimensional arrays - m-dimensional discrete cartesian space
— a hypercube

Integer A(10)

Float B(5, 6)

Dependences

True dependence
a
a

Anti dependence
a
a

Output dependence
a
a =

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?

Outline

e Dependence Analysis

e Increasing Parallelization Opportunities

Array Accesses In a loop

FOR 1 =0 to 5
A[17 = A[I] + 1

Iteration Space Data Space
0 12 3 45 0 12 3 45 / 8 9101112
—— 1 —

o—0—0& 0090 Oo—0— O— O

Array Accesses In a loop

FOR 1 =0 to 5
A[I1] = A[I1] + 1

Iteration Space Data Space
0 12 3 45 0 12 3 45 / 8 9101112
oO—0 —+—1 o 00—

o——0—-0 o O—0— 0— 0

Array Accesses In a loop

FOR 1 =0 to 5
A[1+1] = A[I] + 1

Iteration Space Data Space
0 12 3 45 12 3 45 / 8 9101112
o—O +—+—1 1 +—

o—0—0—=C O) Oo—O—O O0—0 0

Array Accesses In a loop

FOR 1 = 0 to 5
A[1] = A[1+2] + 1

Iteration Space Data Space
0 12 3 45 12 3 45 / 8 9

e—0—0—0 \O) O— 00—

0—

Array Accesses In a loop

FOR 1 =0 to 5
A[2*1] = A[2*1+1] + 1

Iteration Space Data Space
0 12 3 45 12 3 45 / 8 9101112
o—O +—+—1 1 +—

—0—0 0090 O—0— O— 0

= A[2*+1] O

A[2*I]

— A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*1]

Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration i to j and

mEE QQQQQQ FRi1-ots

A[1] = A[I1] + 1

FOR 1 - 0 to 5
A[1+1] = A[I] + 1

FOR I = 0 to 5
A[l] = A[1+2] + 1

FOR I = 0 to 5
A[I17 = A[O] + 1

Multi-Dimensional Dependence

FOR I =1 to n

FOR J =1 to n
All, J] = A[l, J-1] + 1

Multi-Dimensional Dependence

FOR I =1 to n —>J
FOR J =1 to n
A[l, J] = A[I1, J-1] + 1

)
)
)
)

—>0—>¢
—> 90— ¢
—> 90— ¢
—> 90— ¢

—>¢
—>¢
—>¢
—p¢

288!

e —HreoHre—Hre—He

}

FOR I = 1 to n
FOR J =1 to n
Afl, J] = A[l+1, J] + 1

099+ 0+0+0
000000
09+ 90+0+0+0
00000

Outline

e Dependence Analysis
e Increasing Parallelization Opportunities

What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
All, J] = A[I-1, J+1] + 1

What iIs the Dependence?

FOR I = 1 to n —
()
FORJ - 1 to n l ,/

A[l, J] = A[I-1, J+1] + 1 /
1]/
)

Yl

" J
%%
%%
%%
%%
%%

What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

D Ia f/ o
4 4 // 4
Y Ia 0 e
4 4 // 4
ra re o
4 // 4
I o

/ /

What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

What iIs the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
ALr,31 = ALr,3-1] + A[1-1,]3];

Recognizing FORALL Loops

— tor every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instances

(iterations).
Then there is a data dependence between the statements
— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

- If there are no loop carried dependences = parallelizable

Data Dependence Analysis

e I: Distance Vector method
e II: Integer Programming

Distance Vector Method

e The it loop is parallelizable for all
dependence d = [dy,...,d,..d]
either

one of dq,...,d._;is > O

or
all d,,....d =0

Is the Loop Parallelizable?

FOR I =0 to 5
dv = 0] Yes QQQQQQ 0

A[I1] = A[I1] +

dv = [1] {\A\][\AUQ FOR I = 0 to 5

A[1+1] = A[Il]

dVZ[Z] FOR 1 = 0 to 5
A[1] = A[1+2]

dv=[4 FOR I = 0 to 5
A[1] = A[O] +

Are the Loops Parallelizable?

FOR I =1 to n —>J
FOR J =1 to n
A[l, J] = A[I1, J-1] + 1

)
)
)
)

—>0—>¢
—> 90— ¢
—> 90— ¢
—> 90— ¢

—>¢
—>¢
—>¢
—p¢

288!

dv:{o} Yes
1 No OFOHOHOHOO

}

FOR I = 1 to n
FOR J =1 to n
Afl, J] = A[l+1, J] + 1

099+ 0+0+0
000000
09+ 90+0+0+0
00000

Are the Loops Parallelizable?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

NoO
Yes

Integer Programming Method

e Example
FOR I = 0 to 5
A[1+1] = A[1] + 1

e Is there a loop-carried dependence between A[I+1] and A[I]

— Is there two distinct iterations i, and i. such that A[i,+1] is the same
location as A[i,]

— Jintegersi,, i, 0<i,I.<5 i

w? Iyt 1l=1

- Is there a dependence between A[I+1] and A[I+1]

— Is there two distinct iterations i, and i, such that A[i;+1] is the same
location as A[i,+1]

— Jintegersi;, i, 0<i,iL,<5 i1, i 1+1-i,+1

Integer Programming Method

FOR 1 = 0 to 5
A[1+1] = A[I] + 1

e Formulation

— 3 an integer vector T such that AT < b here
A is an integer matrix and b is an integer vector

Iteration Space
FOR 1 = 0 to 5
A[1+1] = A[1] + 1

e N deep loops - n-dimensional
discrete cartesian space

AN
0N

o Affine loop nest - Iteration
space as a set of liner
inequalities

|
I<6
I<]
J<7

]
J
OO Ul AW DN =

Integer Programming Method

FOR I = 0 to 5

_ A[1+1] = A[I] + 1
Formulation

— 3 an integer vector T such that AT < b here
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]
Jintegersi,, i. 0<i, . <5 i, I I,+1=1
— I, # 1. is not an affine function
e divide into 2 problems
e Problem 1 with i, < i. and problem 2 with i, < i,
e If either problem has a solution - there exists a dependence
— How about i,+ 1 = i

e Add two inequalities to single problem
i, +1<i,andi < i,+1

Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 ALI+1] = A[I] + 1
o <i,
5

Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 ALI+1] = A[I] + 1
0<i, i
i, <5
0<i

I <5
iy < I
I, t+ 1 =1
< i,+1

\ 20 20 20 20\ 28\ 2\~

Integer Programming Formulation

e Problemsl
0<i,
i, <5
0<i
i <5
i <
I, t+ 1 =1
i < i+ 1

0)

\ 20 20 20 20\ 28\ 2\~

e and problem 2 with i, < i,

Generalization

e An affine loop nest
FOR 1, = %,;(C1..¢) to 1,,(C;..C)
FOR 1, = T,,(11,C;..¢) to 1,,(1,,Cy..C)

ALFayCipin, €16 s Fap(ipiy, €10 5y Fan(igin. €10]

- Solve 2*n problems of the form
1, = 31, 1 = Jo, Iy = Jnoes 1y < I
1, = 31, 1 = Jo, Iy = Jnos Jn < 1
=34, I, | P o < Jn
i Ji> 15 = Josee Jnog < By

N PR P
» Jo < Iy

Outline

e Increasing Parallelization Opportunities

Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

- Induction Variable Identification
e Array Privatization

e | oop Transformations

o Granularity of Parallelism

o Interprocedural Parallelization

Scalar Privatization

e Example
FOR 1 = 1 to n
X = A[i] * 3:
B[i] = X;

e s there a loop carried dependence?
o What is the type of dependence?

Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR 1 = 1 to n
integer Xtmp;
[i1 * 3;
B[1] = Xtmp;

e Eliminate by expanding into an array
FOR 1 =1 to n
Xtmp[i1] = A[1] * 3;
B[i] = Xtmp[i];

Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context

FOR 1 = 1 to n
integer Xtmp;
Xtmp = A[1] * 3;
B[1] = Xtmp;
1IT(1 == n) X = Xtmp

e Eliminate by expanding into an array
FOR 1 =1 to n
Xtmp[i] = A[i] * 3;:
BLi] - Xtmp[i];
X = Xtmp[n];

Another Example

e How about loop-carried true
dependences?

- Example

FOR 1 = 1 to n
X =X + Al[1];

e Is this loop parallelizable?

Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR 1 = myPid*lters to MIN((myPid+1)*Iters, n)
Xtmp[myPid] = Xtmp[myPid] + A[1];
Barrier();
IT(nyPid == 0) {
FOR p = 0O to NUMPROC-1
X = X + Xtmp[p]l;

Induction Variables

Example
FOR 1 = 0 to N
A[i] = 27i;

After strength reduction
t=1
FOR 1 = 0 to N

A[i] - t;

t = tF2;

What happened to loop carried dependences?

Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable

Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension

Loop Transformations

ﬁ

e A loop may not be parallel as is lz 2%

00 0
e Example | $¢%
FOR i = 1 to N-1 i 4
- 040
FOR j = 1 to N-1
ALr,j] = ALi,j-1] + A[1-1,j];

o

Loop Transformations

e A loop may not be parallel as is

e Example
FOR 1 = 1 to N-1
FOR j = 1 to N-1
ALi.j]1 = ALi,j-11 + ALi-1,j1;

o After loop Skewing {I}:B ﬂm

jnew jold

FOR 1 = 1 to 2*N-3
FORPAR jJ = max(1l,1-N+2) to min(i, N-1)
AL1-3+1,3] = A[i-3+1,3-1] + A[1-3.]1;

Granularity of Parallelism

e Example
FOR 1 — 1 to N-1
FOR j = 1 to N-1
ALi.§1 = ALi,j1 + ALi-1,j1;

e Gets transformed into
FOR 1 = 1 to N-1
Barrier();
FOR jJ = 1+ myPid*l1ters to MIN((myPid+l)*l1ters, n-1)
AL1.3]1 = AL1.3]1 + ALI-1,]1];
Barrier();

e Inner loop parallelism can be expensive
— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns

Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism

Outer Loop Parallelism

e Example
FOR 1 — 1 to N-1
FOR j = 1 to N-1
ALi.§1 = ALi,j1 + ALi-1,j1;

o After Loop Transpose
FOR j = 1 to N-1
FOR 1 = 1 to N-1
ALi.§1 = ALi.§]1 + ALi-1.j1;

e Get mapped into

Barrier();

_

(-

2ED

%

}

—50—5>0—5>»0—5>0—0
—5»0—>»0—5>»0—>0—0

—»0—>»0—>»0—>0—0
00000

%

¢
¢
¢
¢

288
288
$5 8%

0905000

FOR j = 1+ myPid*lters to MIN((myPid+1l)*lters, n-1)

FOR 1 = 1 to N-1
ALr.31 = ALT.3]1 + AL1-1,]31;
Barrier();

Unimodular Transformations

o Interchange, reverse and skew

e Use a matrix transformation
Inew = A IoId

e Interchange

e Reverse

Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example
FOR 1 = 1 to N-1
FOR j = 1 to N-1
ALi.J1 = ALi.j] + ALi-1,j1;

e Interchange
e

e Reverse

e Skew

Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining

Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat = can be very expensive

Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

e Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

- Many optimizations that'll increase parallelism

IT OpenCourseWare
ttp://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

