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Moore’s Law
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Uniprocessor Performance (SPECint)
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Multicores Are Here!
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Issues with Parallelism

e Amdhal’s Law

— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

— T(n) = Ts + Tp/n
— T() = Ts, thus maximum speedup (Ts + Tp) /Ts

e |Load Balancing

— The work is distributed among processors so that a// processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).
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Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

—> Recursive functions




Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze




Programmer Defined Parallel Loop

e FORALL e FORACROSS

— No “loop carried — Some “loop carried
dependences” dependences”

— Fully parallel




Parallel Execution

e Example
FORPAR I = O to N
A[I1] = A[1] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[l] = A[l] + 1

e SPMD (Single Program, Multiple Data) Code
1f(myPid == 0) {

Iters = ceiling(N/NUMPROC) ;
+

Barrier();

FOR I = myPid*lIters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

Barrier();




Parallel Execution

e Example
FORPAR I = O to N
A[I1] = A[1] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR 1 = P*Iters to MIN((P+1)*Iters, N)
A[l] = A[l] + 1

e Code fork a function
Iters = ceiling(N/NUMPROC) ;
ParallelExecute(funcl);

void funcl(integer myPid)
{
FOR I = myPid*lIters to MIN((myPid+1)*Iters, N)
A[I] = A[l] + 1
+




Parallel Execution

e SPMD

— Need to get all the processors execute the
control flow

e Extra synchronization overhead or redundant
computation on all processors or both

— Stack: Private or Shared?

e Fork

— Local variables not visible within the function

e Either make the variables used/defined in the loop
body global or pass and return them as arguments

e Function call overhead




Parallel Thread Basics

e Create separate threads

— Create an OS thread

e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— Qverhead in thread creation

e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done
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Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples
FOR I = 0 to 5
A[1T = A[I1] + 1

FOR1 =0 to 5
A[1] = A[1+6] + 1

For I = 0 to 5
A[2*1] = A[2*1I + 1] + 1




Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

2 5
FOR I = 0 to 6 O—0O—0—0
FOR J =1 to 7
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e Iterations are represented as coordinates in iteration space
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Iteration Space

N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1
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e Iterations are represented as coordinates in iteration space

e Sequential execution order of iterations =» Lexicographic order
[0,0], [O,1], [O,2], ..., [O,6], [&7;]
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Iteration Space

N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1
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e Iterations are represented as coordinates in iteration space
° Sequential execution order of iterations =» Lexicographic order
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Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1

< J
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e An affine loop nest

— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes




Iteration Space

e N deep loops - n-dimensional discrete cartesian space
— Normalized loops: assume step size = 1
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Data Space

e M dimensional arrays - m-dimensional discrete cartesian space
— a hypercube

Integer A(10)

Float B(5, 6)




Dependences

True dependence
a
a

Anti dependence
a
a

Output dependence
a
a =

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?
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Array Accesses In a loop

FOR 1 =0 to 5
A[17 = A[I] + 1

Iteration Space Data Space
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Array Accesses In a loop

FOR 1 =0 to 5
A[I1] = A[I1] + 1

Iteration Space Data Space
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Array Accesses In a loop

FOR 1 =0 to 5
A[1+1] = A[I] + 1
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Array Accesses In a loop

FOR 1 = 0 to 5
A[1] = A[1+2] + 1
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Array Accesses In a loop

FOR 1 =0 to 5
A[2*1] = A[2*1+1] + 1

Iteration Space Data Space
0 12 3 45 12 3 45 / 8 9101112
o—O +—+—1 1 +—
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= A[2*+1] O

A[2*I]

— A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*I]

= A[2*1+1]
A[2*1]




Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration i to j and

mEE  QQQQQQ FRi1-ots

A[1] = A[I1] + 1

FOR 1 - 0 to 5
A[1+1] = A[I] + 1

FOR I = 0 to 5
A[l] = A[1+2] + 1

FOR I = 0 to 5
A[I17 = A[O] + 1




Multi-Dimensional Dependence

FOR I =1 to n

FOR J =1 to n
All, J] = A[l, J-1] + 1




Multi-Dimensional Dependence

FOR I =1 to n —>J
FOR J =1 to n
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What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1




What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
All, J] = A[I-1, J+1] + 1




What iIs the Dependence?
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What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

D Ia f/ o
4 4 // 4
Y Ia 0 e
4 4 // 4
ra re o
4 // 4
I o

/ /




What iIs the Dependence?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1




What iIs the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
ALr,31 = ALr,3-1] + A[1-1,]3];




Recognizing FORALL Loops

— tor every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instances

(iterations).
Then there is a data dependence between the statements
— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

- If there are no loop carried dependences = parallelizable




Data Dependence Analysis

e I: Distance Vector method
e II: Integer Programming




Distance Vector Method

e The it loop is parallelizable for all
dependence d = [dy,...,d,..d ]
either

one of dq,...,d._;is > O

or
all d,,....d =0




Is the Loop Parallelizable?

FOR I =0 to 5
dv = 0] Yes QQQQQQ 0

A[I1] = A[I1] +

dv = [1] {\A\][\AUQ FOR I = 0 to 5

A[1+1] = A[Il]

dVZ[Z] FOR 1 = 0 to 5
A[1] = A[1+2]

dv=[4 FOR I = 0 to 5
A[1] = A[O] +




Are the Loops Parallelizable?

FOR I =1 to n —>J
FOR J =1 to n
A[l, J] = A[I1, J-1] + 1
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FOR I = 1 to n
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Are the Loops Parallelizable?

FOR I = 1 to n
FOR J — 1 to n
AL, J] = A[Il-1, J+1] + 1

NoO
Yes




Integer Programming Method

e Example
FOR I = 0 to 5
A[1+1] = A[1] + 1

e Is there a loop-carried dependence between A[I+1] and A[I]

— Is there two distinct iterations i, and i. such that A[i,+1] is the same
location as A[i,]

— Jintegersi,, i, 0<i,I.<5 i

w? Iyt 1l=1

- Is there a dependence between A[I+1] and A[I+1]

— Is there two distinct iterations i, and i, such that A[i;+1] is the same
location as A[i,+1]

— Jintegersi;, i, 0<i,iL,<5 i1, i 1+1-i,+1




Integer Programming Method

FOR 1 = 0 to 5
A[1+1] = A[I] + 1

e Formulation

— 3 an integer vector T such that AT < b here
A is an integer matrix and b is an integer vector




Iteration Space
FOR 1 = 0 to 5
A[1+1] = A[1] + 1

e N deep loops - n-dimensional
discrete cartesian space
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o Affine loop nest - Iteration
space as a set of liner
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Integer Programming Method

FOR I = 0 to 5

_ A[1+1] = A[I] + 1
Formulation

— 3 an integer vector T such that AT < b here
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]
Jintegersi,, i. 0<i, . <5 i, I I,+1=1
— I, # 1. is not an affine function
e divide into 2 problems
e Problem 1 with i, < i. and problem 2 with i, < i,
e If either problem has a solution - there exists a dependence
— How about i,+ 1 = i

e Add two inequalities to single problem
i, +1<i,andi < i,+1




Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 ALI+1] = A[I] + 1
o <i,
5




Integer Programming Formulation

FOR I = 0 to 5
e Problem 1 ALI+1] = A[I] + 1
0<i, i
i, <5
0<i

I <5
iy < I
I, t+ 1 =1
< i,+1

\ 20 20 20 20\ 28\ 2\~




Integer Programming Formulation

e Problemsl
0<i,
i, <5
0<i
i <5
i <
I, t+ 1 =1
i < i+ 1

0)

\ 20 20 20 20\ 28\ 2\~

e and problem 2 with i, < i,




Generalization

e An affine loop nest
FOR 1, = %,;(C1..¢) to 1,,(C;..C)
FOR 1, = T,,(11,C;..¢) to 1,,(1,,Cy..C)

ALFayCipin, €16 s Fap(ipiy, €10 5y Fan(igin. €10 ]

- Solve 2*n problems of the form
1, = 31, 1 = Jo, Iy = Jnoes 1y < I
1, = 31, 1 = Jo, Iy = Jnos Jn < 1
=34, I, | P o < Jn
i Ji> 15 = Josee Jnog < By

N PR P
» Jo < Iy
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Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

- Induction Variable Identification
e Array Privatization

e | oop Transformations

o Granularity of Parallelism

o Interprocedural Parallelization




Scalar Privatization

e Example
FOR 1 = 1 to n
X = A[i] * 3:
B[i] = X;

e s there a loop carried dependence?
o What is the type of dependence?




Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR 1 = 1 to n
integer Xtmp;
[i1 * 3;
B[1] = Xtmp;

e Eliminate by expanding into an array
FOR 1 =1 to n
Xtmp[i1] = A[1] * 3;
B[i] = Xtmp[i];




Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context

FOR 1 = 1 to n
integer Xtmp;
Xtmp = A[1] * 3;
B[1] = Xtmp;
1IT(1 == n) X = Xtmp

e Eliminate by expanding into an array
FOR 1 =1 to n
Xtmp[i] = A[i] * 3;:
BLi] - Xtmp[i];
X = Xtmp[n];




Another Example

e How about loop-carried true
dependences?

- Example

FOR 1 = 1 to n
X =X + Al[1];

e Is this loop parallelizable?




Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR 1 = myPid*lters to MIN((myPid+1)*Iters, n)
Xtmp[myPid] = Xtmp[myPid] + A[1];
Barrier();
IT(nyPid == 0) {
FOR p = 0O to NUMPROC-1
X = X + Xtmp[p]l;




Induction Variables

Example
FOR 1 = 0 to N
A[i] = 27i;

After strength reduction
t=1
FOR 1 = 0 to N

A[i] - t;

t = tF2;

What happened to loop carried dependences?

Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable




Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension




Loop Transformations

ﬁ

e A loop may not be parallel as is lz 2%

00 0
e Example | $¢%
FOR i = 1 to N-1 i 4
- 040
FOR j = 1 to N-1
ALr,j] = ALi,j-1] + A[1-1,j];

o




Loop Transformations

e A loop may not be parallel as is

e Example
FOR 1 = 1 to N-1
FOR j = 1 to N-1
ALi.j]1 = ALi,j-11 + ALi-1,j1;

o After loop Skewing {I}:B ﬂm

jnew jold

FOR 1 = 1 to 2*N-3
FORPAR jJ = max(1l,1-N+2) to min(i, N-1)
AL1-3+1,3] = A[i-3+1,3-1] + A[1-3.]1;




Granularity of Parallelism

e Example
FOR 1 — 1 to N-1
FOR j = 1 to N-1
ALi.§1 = ALi,j1 + ALi-1,j1;

e Gets transformed into
FOR 1 = 1 to N-1
Barrier();
FOR jJ = 1+ myPid*l1ters to MIN((myPid+l)*l1ters, n-1)
AL1.3]1 = AL1.3]1 + ALI-1,]1];
Barrier();

e Inner loop parallelism can be expensive
— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns




Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism




Outer Loop Parallelism

e Example
FOR 1 — 1 to N-1
FOR j = 1 to N-1
ALi.§1 = ALi,j1 + ALi-1,j1;

o After Loop Transpose
FOR j = 1 to N-1
FOR 1 = 1 to N-1
ALi.§1 = ALi.§]1 + ALi-1.j1;

e Get mapped into

Barrier();
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FOR j = 1+ myPid*lters to MIN((myPid+1l)*lters, n-1)

FOR 1 = 1 to N-1
ALr.31 = ALT.3]1 + AL1-1,]31;
Barrier();




Unimodular Transformations

o Interchange, reverse and skew

e Use a matrix transformation
Inew = A IoId

e Interchange

e Reverse




Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example
FOR 1 = 1 to N-1
FOR j = 1 to N-1
ALi.J1 = ALi.j] + ALi-1,j1;

e Interchange
e

e Reverse

e Skew




Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining




Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat = can be very expensive




Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

e Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

- Many optimizations that'll increase parallelism
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