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Moore’s Law
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Uniprocessor Performance (SPECint)
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Multicores Are Here!
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Issues with Parallelism 
• Amdhal’s Law 

– Any computation can be analyzed in terms of a portion that 
must be executed sequentially Ts and a portion that can be must be executed sequentially, Ts, and a portion that can be 
executed in parallel, Tp. Then for n processors: 

– T(n) = Ts + Tp/n 
– T() = Ts, thus maximum speedup (Ts + Tp) /Ts T() Ts, thus maximum speedup (Ts + Tp) /Ts 

• Load Balancing 
– The work is distributed among processors so that all processors 

are kept busy when parallel task is executed. 

• Granularity 
– The size of the parallel regions between synchronizations or 

the ratio of computation (useful work) to communication 
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the ratio of computation (useful work) to communication 
(overhead). 
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•

Types of Parallelismyp

• Instruction Level 
P  ll  li  (ILP)   Scheduling and Hardware Parallelism (ILP) 

• Task Level Parallelism 

 Scheduling and Hardware 

 Mainly by hand 
(TLP) 

• Loop Level Parallelism • Loop Level Parallelism 
(LLP) or Data Parallelism  Hand or Compiler Generated 

• Pipeline Parallelism 

• Divide and Conquer 

 Hardware or Streaming 

 Recursive functions 
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Divide and Conquer 
Parallelism 

 Recursive functions 



Why Loops?y p 

• 90% of the execution time in 10% of the code 
– Mostly in loops 

• If parallel, can get good performance 
– Load balancing 

• Relatively easy to analyze 
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Programmer Defined Parallel Loopg p 

• FORALL • FORACROSS  
– No “loop carried – Some “loop carried 


dependences” dependences” 
Fully parallel – Fully parallel 
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Parallel Execution 
• Example  

FORPAR I = 0 to N  FORPAR I 0 to N 
A[I] = A[I] + 1 

• Block Distribution: Program gets mapped into 
/Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1 
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1 

• SPMD (Single Program, Multiple Data) Code 
If(myPid == 0) { 

…… 
Iters = ceiling(N/NUMPROC);

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N) 
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FOR I myPid Iters to MIN((myPid+1) Iters, N)
A[I] = A[I] + 1

Barrier(); 



Parallel Execution 
• Example  

FORPAR I = 0 to N  FORPAR I 0 to N 
A[I] = A[I] + 1 

• Block Distribution: Program gets mapped into 
/Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1 
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1 

• Code fork a function 
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);ParallelExecute(func1); 
… 
void func1(integer myPid)
{ 

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)  
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FOR I myPid Iters to MIN((myPid+1) Iters, N)
A[I] = A[I] + 1

} 



Stac ate o S a ed

Parallel Execution 

• SPMD  
– Need to get all the processors execute the 

control flow 
E t  h  i  ti  h  d  d  d  t• Extra synchronization overhead or redundant 
computation on all processors or both 

– Stack: Private or Shared? 

• Fork  
– Local variables not visible within the function 

• Either make the variables used/defined in the loop 
body global or pass and return them as arguments 

Saman Amarasinghe 13 6.035 ©MIT Fall 2006 

body global or pass and return them as arguments 
• Function call overhead 



Parallel Thread Basics 
• Create separate threads 

– Create an OS threadCreate an OS thread 
• (hopefully) it will be run on a separate core 

– pthread_create(&thr, NULL, &entry_point, NULL) 

– Overhead in thread creation 
• Create a separate stack 
• Get the OS to allocate a threadGet the OS to allocate a thread 

• Thread pool 
– Create all the threads (= num cores) at the beginning( ) g g 
– Keep N-1 idling on a barrier, while sequential execution 
– Get them to run parallel code by each executing a 

function 
– Back to the barrier when parallel region is done 
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Parallelizing Compilersg p 

• Finding FORALL Loops out of FOR loopsg p p 

• ExamplesExamples 
FOR I = 0 to 5 
A[I] = A[I] + 1 

FOR I = 0 to 5 
A[I] = A[I+6] + 1 

For I = 0 to 5 
A[2*I] = A[2*I + 1] + 1  
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A[2 I] A[2 I + 1] + 1 
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Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space 

– Normalized loops: assume step size = 1 

0 1 2 3 4 5 6 7  J 

i [i1, i2, i3,…, in] 

FOR I = 0 to 6 
FOR J = I to 7 

0 1 2 3 4 5 6 7  J 
0 
1 
22 

I  3 
4 
5 

• Iterations are represented as coordinates in iteration space 
– i ̅ = [i  i i i ] 

5 
6 
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Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space 

– Normalized loops: assume step size = 1 

0 1 2 3 4 5 6 7  J 
FOR I = 0 to 6 

FOR J = I to 7 

0 1 2 3 4 5 6 7  J 
0 
1 
22 
3 
4 
5 

I  

• Iterations are represented as coordinates in iteration space 
• Sequential execution order of iterations  Lexicographic order 

5 
6 

• Sequential execution order of iterations  Lexicographic order 
[0,0], [0,1], [0,2], …, [0,6], [0,7], 

[1,1], [1,2], …, [1,6], [1,7], 
[2,2], …, [2,6], [2,7], 
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……… 
[6,6], [6,7], 



Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space 

– Normalized loops: assume step size = 1 

0 1 2 3 4 5 6 7  J 
FOR I = 0 to 6 

FOR J = I to 7 

0 1 2 3 4 5 6 7  J 
0 
1 
22 
3 
4 
5 

I  

• Iterations are represented as coordinates in iteration space 
• Sequential execution order of iterations  Lexicographic order 

5 
6 

• Sequential execution order of iterations  Lexicographic order 
• Iteration i̅  is lexicograpically less than j̅ , i̅ < j̅ iff 

there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc 
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Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space 

– Normalized loops: assume step size = 1 

0 1 2 3 4 5 6 7  J 
FOR I = 0 to 6 

FOR J = I to 7 

0 1 2 3 4 5 6 7  J 
0 
1 
22 
3 
4 
5 

I  

• An affine loop nest 
– Loop bounds are integer linear functions of constants, loop constant 

5 
6 

Loop bounds are integer linear functions of constants, loop constant 
variables and outer loop indexes 

– Array accesses are integer linear functions of constants, loop constant 
variables and loop indexes 
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Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space 

– Normalized loops: assume step size = 1 
0 1 2 3 4 5 6 7  J 

FOR I = 0 to 6 
FOR J = I to 7 

0 1 2 3 4 5 6 7  J 
0 
1 
22 
3 
4 
5 

I  

• Affine loop nest  Iteration space as a set of liner inequalities 

5 
6 

Affine loop nest  Iteration space as a set of liner inequalities 
0 ≤ I 

I ≤ 6 
I ≤ J 
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I ≤ J 
J ≤ 7 



Data Spacep

• M dimensional arrays  m-dimensional discrete cartesian space 
h b– a  hypercube 

Integer A(10) 0 1  2  3  4  5  6  7  8  9  

0 1 2 3 4 5 

Float B(5, 6) 

0 1 2 3 4 5 
0 
1 
22 
3 
4 
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a

Dependencesp
• True dependence 

a = 
= a 

• Anti dependence 
= a 

a = 

• Output dependence 
a
 = 
a = 

• Definition: 
Data dependence exists for a dynamic instance i and j iffData dependence exists for a dynamic instance i and j iff 
– either i or j is a write operation 
– i and j refer to the same variable 
– i executes before j 
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• How about array accesses within loops? 
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Array Accesses in a loopy p 
FOR I = 0 to 5 
A[I] = A[I] + 1 

0 1 2 3 4 5 6 7 8 9 10 1112  0 1  2  3  4  5  
Iteration Space Data Space 
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=

Array Accesses in a loopy p 
FOR I = 0 to 5 
A[I] = A[I] + 1 

0 1 2 3 4 5 6 7 8 9 10 1112  0 1  2  3  4  5  
Iteration Space Data Space 

= A[I] 
A[I] 

= A[I]A[I] 
A[I] 

= A[I] 
A[I]A[I] 

= A[I] 
A[I] 

= A[I] 
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[ ]  
A[I] 

= A[I] 
A[I] 



=

Array Accesses in a loopy p 
FOR I = 0 to 5 
A[I+1] = A[I] + 1 

0 1 2 3 4 5 6 7 8 9 10 1112  0 1  2  3  4  5  
Iteration Space Data Space 

= A[I] 
A[I+1] 

= A[I]A[I] 
A[I+1] 

= A[I] 
A[I+1]A[I+1] 

= A[I] 
A[I+1] 

= A[I] 
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[ ]  
A[I+1] 

= A[I] 
A[I+1] 
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Array Accesses in a loopy p 
FOR I = 0 to 5 
A[I] = A[I+2] + 1 

0 1 2 3 4 5 6 7 8 9 10 1112  0 1  2  3  4  5  
Iteration Space Data Space 

= A[I+2] 
A[I] 

= A[I+2]A[I+2] 
A[I] 

= A[I+2] 
A[I]A[I] 

= A[I+2] 
A[I] 

= A[I+2] 
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[ ] 
A[I] 

= A[I+2] 
A[I] 
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Array Accesses in a loopy p 
FOR I = 0 to 5 
A[2*I] = A[2*I+1] + 1 

0 1 2 3 4 5 6 7 8 9 10 1112  0 1  2  3  4  5  
Iteration Space Data Space 

= A[2*+1] 
A[2*I] 

= A[2*I+1]A[2*I+1] 
A[2*I] 

= A[2*I+1] 
A[2*I]A[2 I] 

= A[2*I+1] 
A[2*I] 

= A[2*I+1] 
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[ ] 
A[2*I] 

= A[2*I+1] 
A[2*I] 
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Distance Vectors 

• A loop has a distance d if there exist a data p 
dependence from iteration i to j and d = j-i 

0 5 

FOR I = 0 to 5  

FOR I = 0 to 5 
A[I] = A[I] + 1

 0dv 

 1d FOR I 0 to 5 
A[I+1] = A[I] + 1 

 1dv 

  FOR I = 0 to 5 
A[I] = A[I+2] + 1 

 2dv 
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FOR I = 0 to 5 
A[I] = A[0] + 1

        *2,1  dv 



Multi-Dimensional Dependencep
FOR I = 1 to n 
FOR J 1 t 

J 
FOR J = 1 to n 
A[I, J] = A[I, J-1] + 1 

I 




 






1 
0

dv 
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Multi-Dimensional Dependencep
FOR I = 1 to n 
FOR J 1 t 

J 
FOR J = 1 to n 
A[I, J] = A[I, J-1] + 1 

I 




 






1 
0

dv 

FOR I = 1 to n 
FOR J 1 to n 

J 

FOR J = 1 to n 
A[I, J] = A[I+1, J] + 1 I 

1 
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


 






0 
1

dv 



Outline 

• Dependence Analysisp y 
• Increasing Parallelization Opportunities 
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What is the Dependence?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

0 1 2  3 4 5  
0 
11 
2 
3 
4 
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4 



=

What is the Dependence?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

0 1 2  3 4 5  
0 
11 
2 
3 
4 
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4 
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What is the Dependence?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 
 1 

 

 

 

 


 
1 

1
dv 
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=

What is the Dependence?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

FOR I = 1 to n 
O  1  t  

J 

FOR J = 1 to n 
A[I] = A[I-1] + 1 I 
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=

What is the Dependence?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 
 1 dv=[1, -1]

 

 

 

 


 
1 

1
dv 

FOR I = 1 to n 
O  1  t  

J 

FOR J = 1 to n 
B[I] = B[I-1] + 1 I 

 1111 
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
 

 

 




 

 

 

 


 

 

 

 


 

 

 

 


 
* 
1 

,
3 

1 
,

2 
1 

,
1 

1 
dv 



What is the Dependence? 

FOR i = 1 to N-1 

p 
J 

FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j]; I 

 01 

 

 

 

 

 

 

 


 

1 
0 

,
0 
1

dv 
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Recognizing FORALL Loops 

•	 Find data dependences in loop 
FFor every paiir of array acceses tto the same array – 

g g	 p 

f  th  
If the first access has at least one dynamic instance (an iteration) 
in which it refers to a location in the array that the second access 
also refers to in at least one of the later dynamic instancesalso refers to in at least one of the later dynamic instances 
(iterations). 
Then there is a data dependence between the statements 

– (Note that same array can refer to itself – output dependences) output dependences)(Note	that same array can refer to itself 

• Definition 

• 

– Loop carried dependence: Loop-carried dependence:

dependence that crosses a loop boundary


• If there are no loop carried dependences  parallelizable
If there are no loop carried dependences  parallelizable
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Data Dependence Analysisp y 

• I: Distance Vector method 
• II: Integer Programming 
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Distance Vector Method 

• The ith loop is parallelizable for allp p 
dependence d = [d1,…,di,..dn] 
either 

one of d1,…,di-1 is > 0 
or 

all d1,…,di = 0 
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  es

Is the Loop Parallelizable?p

FOR I = 0 to 5 
A[I] A[I] + 1 

 0dv Yes A[I] = A[I] + 1 

FOR I = 0 to 5 
A[I+1] = A[I] + 1 

 1dv No 

FOR I = 0 to 5 2dv No 
A[I] = A[I+2] + 1 
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FOR I = 0 to 5 
A[I] = A[0] + 1

 *dv No 



Are the Loops Parallelizable?p
FOR I = 1 to n 
FOR J 1 t 

J 
FOR J = 1 to n 
A[I, J] = A[I, J-1] + 1 

I 




 






1 
0

dv Yes 
No 

FOR I = 1 to n 
FOR J 1 to n 

J 

FOR J = 1 to n 
A[I, J] = A[I+1, J] + 1 I 

1 
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


 






0 
1

dv No 
Yes 



=

Are the Loops Parallelizable?p
FOR I = 1 to n 
FOR J = 1 to n  

J 
FOR J 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 
 1 dv=[1, -1]

 

 

 

 


 
1 

1
dv No 

Yes 

FOR I = 1 to n 
O  1  t  

J 

FOR J = 1 to n 
B[I] = B[I-1] + 1 I 

1 No 
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
 

 

 


 

* 
1

dv 
No 
Yes 



   

•

=

Integer Programming Methodg g g 

• Example  
FOR I 0 t 5FOR I = 0 to 5 
A[I+1] = A[I] + 1 

• Is there a loop-carried dependence between A[I+1] and A[I] 
– Is there two distinct iterations iw and ir such that A[iw+1] is the same 

location as A[ir]location as A[ir] 
–  integers iw, ir 0 ≤ iw, ir ≤ 5 iw  ir iw+ 1 = ir 

• Is there a dependence between A[I+1] and A[I+1]Is there a dependence between A[I+1] and A[I+1] 
– Is there two distinct iterations i1 and i2 such that A[i1+1] is the same 

location as A[i2+1] 
–  integers i i 0 ≤ i i ≤ 5 i  i i + 1 = i  +1 
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 integers i1, i2 0 ≤ i1, i2 ≤ 5 i1  i2 i1+ 1 i2 +1 



Integer Programming Methodg g	 g 
FOR I = 0 to 5 
A[I+1] = A[I] + 1

•	 FormulationFormulation• 
–	  an integer vector i̅ such that Â i̅ ≤ b̅ where


Â is an integer matrix and b̅ is an integer vector
Â is	an integer matrix and b is an integer vector 
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Iteration Spacep
FOR I = 0 to 5 
A[I+1] = A[I] + 1 

• N deep loops  n-dimensional 
discrete cartesian space 

0 1  2  3  4  5  6 7   J 
0 • Affine loop nest  Iteration 

space as a set of liner 
inequalities 

0 
1 
2 
3I  0 ≤ I 

I ≤ 6 
I ≤ J 

3 
4 
5 
6 

I  
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J ≤ 7 6 



Integer Programming Method 

• 

g g	 g 
FOR I = 0 to 5 
A[I+1] = A[I] + 1

•	 FormulationFormulation 
–	  an integer vector i̅ such that Â i̅ ≤ b̅ where


– 

Â is an integer matrix and b̅ is an integer vector
Â is	an integer matrix and b is an integer vector 

•	 Our problem formulation for A[i] and A[i+1] 
 integers i i 0 ≤ i i ≤ 5 iiw  iir iw++ 11 = i= ir integers iw, ir 0 ≤ iw, ir ≤ 5 i


– iw  ir is not an affine function 

• divide into 2 problems 
• Problem 1 with iw < ir and problem 2 with ir < iw 

• If either problem has a solution  there exists a dependence 

– How about iw+ 1 = irw	 r 
• Add two inequalities to single problem


iw+ 1 ≤ ir, and ir ≤ iw+ 1
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Integer Programming Formulationg g g 
FOR I = 0 to 5 

• Problem 1  A[I+1] = A[I] + 1 

0 ≤ iw


iw ≤ 5


0 ≤ ir

ir ≤ 5


i i
iw < ir 

iw+ 1 ≤ ir

i ≤ iiw+ 1
ir ≤ + 1 
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Integer Programming Formulationg g g 
FOR I = 0 to 5 

• Problem 1  A[I+1] = A[I] + 1 

0 ≤ iw  -iw ≤ 0


iw ≤ 5  iw ≤ 5


0 ≤ ir  -ir ≤ 0


ir ≤ 5  ir ≤ 5


i < iir  iiw i ≤
iw  - ir ≤ -11


iw+ 1 ≤ ir  iw - ir ≤ -1


i ≤ iiw+ 1+ 1  -iiw + ir ≤ 1
ir ≤ + i  ≤ 1 
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Integer Programming Formulationg g g 

• Problem 1  Â b̅ 
0 ≤ iw  -iw ≤ 0  -1  0  0  
iw ≤ 5  iw ≤

 5 

1 0 5 
0 ≤ ir  -ir ≤ 0  0  -1  0  
ir ≤ 5  ir ≤

 5 

0 1 5 
i i  i i ≤ 1 1 1 1iw < ir  iw - ir ≤ -1 1 -1 -1 
iw+ 1 ≤ ir  iw - ir ≤ -1 1 -1 -1 
i ≤ i + 1   -i + i  ≤ 1 -1 1 1ir ≤ iw+ 1  iw + ir ≤ 1 1 1 1 

• and problem 2 with ir < iw 
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and problem 2 with ir < iw 



•

Generalization 
• An affine loop nest 

FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck) 
…… 
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck) 

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)] 

• Solve 2*n problems of the formSolve 2*n problems of the form 
• i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn 
• i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in 
• i1 = j1, i2 = j2,…… in-1 < jn-11 j1 2 j2 n 1 jn 1 
• i1 = j1, i2 = j2,…… jn-1 < in-1 

………………… 
• i1 = j1, i2 < j2 
• i1 = j1, j2 < i2 
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1 j1 j2 2 

• i1 < j1 
• j1 < i1 



c eas a a e at o O tu t es

Outline 

• Why ParallelismWhy Parallelism 

• Parallel Execution 

• Parallelizing Compilers 

D d A l i• Dependence Analysis 

• Increasing Parallelization Opportunitiesg ppo 



•

Increasing Parallelization 
OpportunitiesOpportunities 

• Scalar Privatization 
• Reduction Recognition 
• Induction Variable IdentificationInduction Variable Identification 
• Array Privatization 
• Loop Transformations 
• Granularity of Parallelismy
• Interprocedural Parallelization 
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Scalar Privatization 

• Examplep
FOR i = 1 to n 
X = A[i] * 3;
B[i] XB[i] = X; 

• Is there a loop carried dependence?Is there a loop carried dependence? 
• What is the type of dependence? 
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Privatization 

• Analysis: 
– Any anti- and output- loop-carried dependences 

Eli i t b i i i l l t t• Eliminate by assigning in local context 
FOR i = 1 to n 

integer Xtmp;
[i] * 3Xtmp = A[i] * 3;

B[i] = Xtmp; 

• Eliminate by expanding into an array 
FOR i = 1 to n 

Xtmp[i] = A[i] * 3; 
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p 
B[i] = Xtmp[i]; 



=

Privatization 

• Need a final assignment to maintain the correct 
value after the loop nestvalue after the loop nest 

• Eliminate by assigning in local contextEliminate by assigning in local context 
FOR i = 1 to n 

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp 

Eli i t b di i t• Eliminate by expanding into an array 
FOR i = 1 to n 

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i]; 
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B[i] Xtmp[i];
X = Xtmp[n]; 



Another Examplep

• How about loop-carried truep
dependences? 

• Example• Example 
FOR i = 1 to n 
X = X + A[i];[ ];  

• Is this loop parallelizable?p p
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Reduction Recognitiong

• Reduction Analysis: 
– Only associative operations 
– The result is never used within the loop 

• Transformation 
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier()Barrier();
If(myPid == 0) {

FOR p = 0 to NUMPROC-1
X = X + Xtmp[p]; 
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X X + Xtmp[p]; 
… 



•

=

Induction Variables 

• Example  
FOR i = 0 to N 

A[i] = 2^i; 

• After strength reductionAfter strength reduction 
t = 1 
FOR i = 0 to N 

A[i] = t;A[i] t; 
t = t*2; 

• What happened to loop carried dependences?pp p p 
• Need to do opposite of this! 

– Perform induction variable analysis 
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– Rewrite IVs as a function of the loop variable 



Array Privatizationy

• Similar to scalar privatization 

• However, analysis is more complex 
– Array Data Dependence Analysis: 

Checks if two iterations access the same location 
– Array Data Flow Analysis:Array Data Flow Analysis: 

Checks if two iterations access the same value 

• Transformations 
– Similar to scalar privatization 

P i  t  f  h  d  ith  
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– Private copy for each processor or expand with an 
additional dimension 



Loop Transformations 
• A loop may not be parallel as is 

E l 

p 
J 

• Example 
FOR i = 1 to N-1 
FOR j = 1 to N-1 

I 

j 
A[i,j] = A[i,j-1] + A[i-1,j]; 
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Loop Transformations 
• A loop may not be parallel as is 

E l 

p 
J 

• Example 
FOR i = 1 to N-1 
FOR j = 1 to N-1 

I 

j 
A[i,j] = A[i,j-1] + A[i-1,j]; J 

After loop Skewing 
I 


 


 

 





 


 oldnew ii 11 

• After loop Skewing 
FOR i = 1 to 2*N-3 
FORPAR j = max(1,i-N+2) to min(i, N-1) 










 





 oldnew jj 10 
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A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j]; 



=

Granularity of Parallelism y

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1) 

Barrier(); 

• Example  
FOR  i = 1 to N  1 

J 
FOR i 1 to N-1 

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j]; 

I 
• Gets transformed into 

FOR i = 1 to N-1 
Barrier();

j 1 id* (( id 1)* 1) 
A[i,j] = A[i,j] + A[i-1,j]; 

• Inner loop parallelism can be expensive 
– Startup and teardown overhead of parallel regions 
– Lot of synchronization Lot of synchronization 
– Can even lead to slowdowns 
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–

Granularity of Parallelism y

• Inner loop parallelism can be expensivep p  p  

• Solutions 
– Don’t parallelize if the amount of work withinDon t parallelize if the amount of work within 

the loop is too small 
oror 
– Transform into outer-loop parallelism 
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Outer Loop Parallelismp

• Example  
FOR i = 1 to N 1 

J 
FOR i 1 to N-1 

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j]; I 

• After Loop Transpose 
FOR j = 1 to N-1

i 1 1 

I 
FOR i = 1 to N-1 

A[i,j] = A[i,j] + A[i-1,j]; 

• Get mapped into 
J 

• Get mapped into 
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1 
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A[i,j] = A[i,j] + A[i-1,j];
Barrier(); 





Unimodular Transformations 

• Interchange, reverse and skewg ,
• Use a matrix transformation 

Inew = A Iold Inew A Iold 

• Interchange 
 


 

 





 


 oldnew ii 

01 
10 

Interchange 

Reverse 
















 oldnew jj 01 


 


 

 

 
 


 


 oldnew ii 01 

• Reverse 








 





 oldnew jj 10 

 ii 11 • Skew  
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


 



 



 








 



 

old 

old 

new 

new 

j 
i 

j 
i 

10 
11 



Legality of Transformationsg y 
• Unimodular transformation with matrix A is valid iff. 

For all dependence vectors vFor all dependence vectors v 
the first non-zero in Av is positive 

• Example
 0101

FOR i = 1 to N-1 
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j]; 




 








 



 



 






10 
01 

1 
0 

,
0 
1

dv 

• Interchange 


 






01 
10

A 


 








 



 



 



 
01 
10 

10 
01 

01 
10 

 

• Reverse 


 

 




10 
01

A 


 

 






 



 



 

 

 

10 
01 

10 
01 

10 
01 

 

• Skew  
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


 






10 
11

A 


 








 



 



 



 
10 
11 

10 
01 

10 
11 

 



Interprocedural Parallelizationp

• Function calls will make a loop unparallelizatble 
– Reduction of available parallelism 
– A lot of inner-loop parallelism 

• Solutions 
I t  d  l  A  l  i– Interprocedural Analysis 

– Inlining 
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Interprocedural Parallelizationp

• Issues 
S  f  ti  d  ti  – Same function reused many times 

– Analyze a function on each trace  Possibly exponential 
– Analyze a function once  unrealizable path problem 

• Interprocedural Analysis 
Need to update all the analysis – Need to update all the analysis 

– Complex analysis 
– Can be expensive 

• Inlining 
– Works with existing analysis 
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Works with existing analysis 
– Large code bloat  can be very expensive 



Summaryy 

• Multicores are here 
– Need parallelism to keep the performance gains 
– Programmer defined or compiler extracted parallelism 

• Automatic parallelization of loops with arrays 
– Requires Data Dependence Analysis 
– Iteration space & data space abstraction


A i t  bl 


• 

– An integer programmiing problem 

• Many optimizations that’ll increase parallelism Many optimizations that ll increase parallelism 
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