
Spring 2010Spring 2010

Parallelization

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

c eas a a e at o O tu t es

Outline

• Why ParallelismWhy Parallelism

• Parallel Execution

• Parallelizing Compilers

D d A l i• Dependence Analysis

• Increasing Parallelization Opportunitiesg ppo

Moore’s Law

Itanium
Itanium 2

1,000,000,000
From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

X
-1

1/
78

0)

52%/year ??%/year
P2

P3
P4

10,000,000

100,000,000

N
um

be

m
an

ce
 (v

s.
 V

A
X

386

486

Pentium
P2

1,000,000

er of Transistors

1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

P
er

fo
r

25%/year

8086

286 100,000

10,000

s

Saman Amarasinghe 3 6.035 ©MIT Fall 2006From David Patterson

Uniprocessor Performance (SPECint)

Itanium
Itanium 2

p ()
1,000,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

P2

P3
P4

10,000,000

100,000,000

N
um

be

386

486

Pentium
P2

1,000,000

er of Transistors

8086

286 100,000

10,000

s

Saman Amarasinghe 4 6.035 ©MIT Fall 2006From David Patterson

Multicores Are Here!

512512 Picochip Ambric Pi hi
PC102 AM2045

256 Cisco
CSR-1

128 Intel
TflopsTflops

64

32 Raza Cavium # of# of Raw Raw XLRXLR O tOcteon

16
cores
8 Niagara Cell

4 Boardcom 1480 Boardcom 1480 Opteron 4P

4 Xeon MP
Xbox360

2 Power4
PA-8800 Opteron Tanglewood

PExtreme Power6
Yonah

1
4004 8080 8086 286 386 486 Pentium P2 P3 Itanium

P4P41
8008 Athlon Itanium 2

1970 1975 1980 1985 1990 1995 2000 2005 20??

Saman Amarasinghe 5 6.035 ©MIT Fall 2006

Issues with Parallelism
• Amdhal’s Law

– Any computation can be analyzed in terms of a portion that
must be executed sequentially Ts and a portion that can be must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:

– T(n) = Ts + Tp/n
– T() = Ts, thus maximum speedup (Ts + Tp) /Ts T() Ts, thus maximum speedup (Ts + Tp) /Ts

• Load Balancing
– The work is distributed among processors so that all processors

are kept busy when parallel task is executed.

• Granularity
– The size of the parallel regions between synchronizations or

the ratio of computation (useful work) to communication

Saman Amarasinghe 6 6.035 ©MIT Fall 2006

the ratio of computation (useful work) to communication
(overhead).

c eas a a e at o O tu t es

Outline

• Why ParallelismWhy Parallelism

• Parallel Execution

• Parallelizing Compilers

D d A l i• Dependence Analysis

• Increasing Parallelization Opportunitiesg ppo

•

Types of Parallelismyp

• Instruction Level
P ll li (ILP)  Scheduling and Hardware Parallelism (ILP)

• Task Level Parallelism

 Scheduling and Hardware

 Mainly by hand
(TLP)

• Loop Level Parallelism • Loop Level Parallelism
(LLP) or Data Parallelism  Hand or Compiler Generated

• Pipeline Parallelism

• Divide and Conquer

 Hardware or Streaming

 Recursive functions

Saman Amarasinghe 8 6.035 ©MIT Fall 2006

Divide and Conquer
Parallelism

 Recursive functions

Why Loops?y p

• 90% of the execution time in 10% of the code
– Mostly in loops

• If parallel, can get good performance
– Load balancing

• Relatively easy to analyze

Saman Amarasinghe 9 6.035 ©MIT Fall 2006

Programmer Defined Parallel Loopg p

• FORALL • FORACROSS
– No “loop carried – Some “loop carried

dependences” dependences”
Fully parallel – Fully parallel

Saman Amarasinghe 10 6.035 ©MIT Fall 2006

Parallel Execution
• Example

FORPAR I = 0 to N FORPAR I 0 to N
A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
/Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

• SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

……
Iters = ceiling(N/NUMPROC);

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

Saman Amarasinghe 11 6.035 ©MIT Fall 2006

FOR I myPid Iters to MIN((myPid+1) Iters, N)
A[I] = A[I] + 1

Barrier();

Parallel Execution
• Example

FORPAR I = 0 to N FORPAR I 0 to N
A[I] = A[I] + 1

• Block Distribution: Program gets mapped into
/Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

• Code fork a function
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);ParallelExecute(func1);
…
void func1(integer myPid)
{

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

Saman Amarasinghe 12 6.035 ©MIT Fall 2006

FOR I myPid Iters to MIN((myPid+1) Iters, N)
A[I] = A[I] + 1

}

Stac ate o S a ed

Parallel Execution

• SPMD
– Need to get all the processors execute the

control flow
E t h i ti h d d d t• Extra synchronization overhead or redundant
computation on all processors or both

– Stack: Private or Shared?

• Fork
– Local variables not visible within the function

• Either make the variables used/defined in the loop
body global or pass and return them as arguments

Saman Amarasinghe 13 6.035 ©MIT Fall 2006

body global or pass and return them as arguments
• Function call overhead

Parallel Thread Basics
• Create separate threads

– Create an OS threadCreate an OS thread
• (hopefully) it will be run on a separate core

– pthread_create(&thr, NULL, &entry_point, NULL)

– Overhead in thread creation
• Create a separate stack
• Get the OS to allocate a threadGet the OS to allocate a thread

• Thread pool
– Create all the threads (= num cores) at the beginning() g g
– Keep N-1 idling on a barrier, while sequential execution
– Get them to run parallel code by each executing a

function
– Back to the barrier when parallel region is done

Saman Amarasinghe 14 6.035 ©MIT Fall 2006

c eas a a e at o O tu t es

Outline

• Why ParallelismWhy Parallelism

• Parallel Execution

• Parallelizing Compilers

D d A l i• Dependence Analysis

• Increasing Parallelization Opportunitiesg ppo

=

Parallelizing Compilersg p

• Finding FORALL Loops out of FOR loopsg p p

• ExamplesExamples
FOR I = 0 to 5
A[I] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1

Saman Amarasinghe 16 6.035 ©MIT Fall 2006

A[2 I] A[2 I + 1] + 1

– =

Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space

– Normalized loops: assume step size = 1

0 1 2 3 4 5 6 7  J

i [i1, i2, i3,…, in]

FOR I = 0 to 6
FOR J = I to 7

0 1 2 3 4 5 6 7  J
0
1
22

I  3
4
5

• Iterations are represented as coordinates in iteration space
– i ̅ = [i i i i]

5
6

Saman Amarasinghe 17 6.035 ©MIT Fall 2006

Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space

– Normalized loops: assume step size = 1

0 1 2 3 4 5 6 7  J
FOR I = 0 to 6

FOR J = I to 7

0 1 2 3 4 5 6 7  J
0
1
22
3
4
5

I 

• Iterations are represented as coordinates in iteration space
• Sequential execution order of iterations  Lexicographic order

5
6

• Sequential execution order of iterations  Lexicographic order
[0,0], [0,1], [0,2], …, [0,6], [0,7],

[1,1], [1,2], …, [1,6], [1,7],
[2,2], …, [2,6], [2,7],

Saman Amarasinghe 18 6.035 ©MIT Fall 2006

………
[6,6], [6,7],

Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space

– Normalized loops: assume step size = 1

0 1 2 3 4 5 6 7  J
FOR I = 0 to 6

FOR J = I to 7

0 1 2 3 4 5 6 7  J
0
1
22
3
4
5

I 

• Iterations are represented as coordinates in iteration space
• Sequential execution order of iterations  Lexicographic order

5
6

• Sequential execution order of iterations  Lexicographic order
• Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff

there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc

Saman Amarasinghe 19 6.035 ©MIT Fall 2006

Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space

– Normalized loops: assume step size = 1

0 1 2 3 4 5 6 7  J
FOR I = 0 to 6

FOR J = I to 7

0 1 2 3 4 5 6 7  J
0
1
22
3
4
5

I 

• An affine loop nest
– Loop bounds are integer linear functions of constants, loop constant

5
6

Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

– Array accesses are integer linear functions of constants, loop constant
variables and loop indexes

Saman Amarasinghe 20 6.035 ©MIT Fall 2006

Iteration Spacep
• N deep loops  n-dimensional discrete cartesian space

– Normalized loops: assume step size = 1
0 1 2 3 4 5 6 7  J

FOR I = 0 to 6
FOR J = I to 7

0 1 2 3 4 5 6 7  J
0
1
22
3
4
5

I 

• Affine loop nest  Iteration space as a set of liner inequalities

5
6

Affine loop nest  Iteration space as a set of liner inequalities
0 ≤ I

I ≤ 6
I ≤ J

Saman Amarasinghe 21 6.035 ©MIT Fall 2006

I ≤ J
J ≤ 7

Data Spacep

• M dimensional arrays  m-dimensional discrete cartesian space
h b– a hypercube

Integer A(10) 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5

Float B(5, 6)

0 1 2 3 4 5
0
1
22
3
4

Saman Amarasinghe 22 6.035 ©MIT Fall 2006

a

Dependencesp
• True dependence

a =
= a

• Anti dependence
= a

a =

• Output dependence
a
 =
a =

• Definition:
Data dependence exists for a dynamic instance i and j iffData dependence exists for a dynamic instance i and j iff
– either i or j is a write operation
– i and j refer to the same variable
– i executes before j

Saman Amarasinghe 23 6.035 ©MIT Fall 2006

• How about array accesses within loops?

c eas a a e at o O tu t es

Outline

• Why ParallelismWhy Parallelism

• Parallel Execution

• Parallelizing Compilers

D d A l i• Dependence Analysis

• Increasing Parallelization Opportunitiesg ppo

Array Accesses in a loopy p
FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

Saman Amarasinghe 25 6.035 ©MIT Fall 2006

=

Array Accesses in a loopy p
FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I]
A[I]

= A[I]A[I]
A[I]

= A[I]
A[I]A[I]

= A[I]
A[I]

= A[I]

Saman Amarasinghe 26 6.035 ©MIT Fall 2006

[]
A[I]

= A[I]
A[I]

=

Array Accesses in a loopy p
FOR I = 0 to 5
A[I+1] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I]
A[I+1]

= A[I]A[I]
A[I+1]

= A[I]
A[I+1]A[I+1]

= A[I]
A[I+1]

= A[I]

Saman Amarasinghe 27 6.035 ©MIT Fall 2006

[]
A[I+1]

= A[I]
A[I+1]

=

Array Accesses in a loopy p
FOR I = 0 to 5
A[I] = A[I+2] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[I+2]
A[I]

= A[I+2]A[I+2]
A[I]

= A[I+2]
A[I]A[I]

= A[I+2]
A[I]

= A[I+2]

Saman Amarasinghe 28 6.035 ©MIT Fall 2006

[]
A[I]

= A[I+2]
A[I]

=

Array Accesses in a loopy p
FOR I = 0 to 5
A[2*I] = A[2*I+1] + 1

0 1 2 3 4 5 6 7 8 9 10 1112 0 1 2 3 4 5
Iteration Space Data Space

= A[2*+1]
A[2*I]

= A[2*I+1]A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]A[2 I]

= A[2*I+1]
A[2*I]

= A[2*I+1]

Saman Amarasinghe 29 6.035 ©MIT Fall 2006

[]
A[2*I]

= A[2*I+1]
A[2*I]

=

Distance Vectors

• A loop has a distance d if there exist a data p
dependence from iteration i to j and d = j-i

0 5

FOR I = 0 to 5

FOR I = 0 to 5
A[I] = A[I] + 1

 0dv

 1d FOR I 0 to 5
A[I+1] = A[I] + 1

 1dv

  FOR I = 0 to 5
A[I] = A[I+2] + 1

 2dv

Saman Amarasinghe 30 6.035 ©MIT Fall 2006

FOR I = 0 to 5
A[I] = A[0] + 1

     *2,1  dv

Multi-Dimensional Dependencep
FOR I = 1 to n
FOR J 1 t

J
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

I











1
0

dv

Saman Amarasinghe 31 6.035 ©MIT Fall 2006

Multi-Dimensional Dependencep
FOR I = 1 to n
FOR J 1 t

J
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

I











1
0

dv

FOR I = 1 to n
FOR J 1 to n

J

FOR J = 1 to n
A[I, J] = A[I+1, J] + 1 I

1

Saman Amarasinghe 32 6.035 ©MIT Fall 2006











0
1

dv

Outline

• Dependence Analysisp y
• Increasing Parallelization Opportunities

=

What is the Dependence?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I

0 1 2 3 4 5
0
11
2
3
4

Saman Amarasinghe 34 6.035 ©MIT Fall 2006

4

=

What is the Dependence?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I

0 1 2 3 4 5
0
11
2
3
4

Saman Amarasinghe 35 6.035 ©MIT Fall 2006

4

=

What is the Dependence?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I
 1











1

1
dv

Saman Amarasinghe 36 6.035 ©MIT Fall 2006

=

What is the Dependence?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I

FOR I = 1 to n
O 1 t

J

FOR J = 1 to n
A[I] = A[I-1] + 1 I

Saman Amarasinghe 37 6.035 ©MIT Fall 2006

=

What is the Dependence?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I
 1 dv=[1, -1]











1

1
dv

FOR I = 1 to n
O 1 t

J

FOR J = 1 to n
B[I] = B[I-1] + 1 I

 1111

Saman Amarasinghe 38 6.035 ©MIT Fall 2006







































*
1

,
3

1
,

2
1

,
1

1
dv

What is the Dependence?

FOR i = 1 to N-1

p
J

FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j]; I

 01


















1
0

,
0
1

dv

Saman Amarasinghe 39 6.035 ©MIT Fall 2006

Recognizing FORALL Loops

•	 Find data dependences in loop
FFor every paiir of array acceses tto the same array –

g g	 p

f th
If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access
also refers to in at least one of the later dynamic instancesalso refers to in at least one of the later dynamic instances
(iterations).
Then there is a data dependence between the statements

– (Note that same array can refer to itself – output dependences) output dependences)(Note	that same array can refer to itself

• Definition

•

– Loop carried dependence: Loop-carried dependence:

dependence that crosses a loop boundary

• If there are no loop carried dependences  parallelizable
If there are no loop carried dependences  parallelizable

Saman Amarasinghe 40	 6.035 ©MIT Fall 2006

Data Dependence Analysisp y

• I: Distance Vector method
• II: Integer Programming

Saman Amarasinghe 41 6.035 ©MIT Fall 2006

Distance Vector Method

• The ith loop is parallelizable for allp p
dependence d = [d1,…,di,..dn]
either

one of d1,…,di-1 is > 0
or

all d1,…,di = 0

Saman Amarasinghe 42 6.035 ©MIT Fall 2006

  es

Is the Loop Parallelizable?p

FOR I = 0 to 5
A[I] A[I] + 1

 0dv Yes A[I] = A[I] + 1

FOR I = 0 to 5
A[I+1] = A[I] + 1

 1dv No

FOR I = 0 to 5 2dv No
A[I] = A[I+2] + 1

Saman Amarasinghe 43 6.035 ©MIT Fall 2006

FOR I = 0 to 5
A[I] = A[0] + 1

 *dv No

Are the Loops Parallelizable?p
FOR I = 1 to n
FOR J 1 t

J
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

I











1
0

dv Yes
No

FOR I = 1 to n
FOR J 1 to n

J

FOR J = 1 to n
A[I, J] = A[I+1, J] + 1 I

1

Saman Amarasinghe 44 6.035 ©MIT Fall 2006











0
1

dv No
Yes

=

Are the Loops Parallelizable?p
FOR I = 1 to n
FOR J = 1 to n

J
FOR J 1 to n
A[I, J] = A[I-1, J+1] + 1

I
 1 dv=[1, -1]











1

1
dv No

Yes

FOR I = 1 to n
O 1 t

J

FOR J = 1 to n
B[I] = B[I-1] + 1 I

1 No

Saman Amarasinghe 45 6.035 ©MIT Fall 2006











*
1

dv
No
Yes

•

=

Integer Programming Methodg g g

• Example
FOR I 0 t 5FOR I = 0 to 5
A[I+1] = A[I] + 1

• Is there a loop-carried dependence between A[I+1] and A[I]
– Is there two distinct iterations iw and ir such that A[iw+1] is the same

location as A[ir]location as A[ir]
–  integers iw, ir 0 ≤ iw, ir ≤ 5 iw  ir iw+ 1 = ir

• Is there a dependence between A[I+1] and A[I+1]Is there a dependence between A[I+1] and A[I+1]
– Is there two distinct iterations i1 and i2 such that A[i1+1] is the same

location as A[i2+1]
–  integers i i 0 ≤ i i ≤ 5 i  i i + 1 = i +1

Saman Amarasinghe 46 6.035 ©MIT Fall 2006

 integers i1, i2 0 ≤ i1, i2 ≤ 5 i1  i2 i1+ 1 i2 +1

Integer Programming Methodg g	 g
FOR I = 0 to 5
A[I+1] = A[I] + 1

•	 FormulationFormulation•
–	  an integer vector i̅ such that Â i̅ ≤ b̅ where

Â is an integer matrix and b̅ is an integer vector
Â is	an integer matrix and b is an integer vector

Saman Amarasinghe 47	 6.035 ©MIT Fall 2006

Iteration Spacep
FOR I = 0 to 5
A[I+1] = A[I] + 1

• N deep loops  n-dimensional
discrete cartesian space

0 1 2 3 4 5 6 7  J
0 • Affine loop nest  Iteration

space as a set of liner
inequalities

0
1
2
3I  0 ≤ I

I ≤ 6
I ≤ J

3
4
5
6

I 

Saman Amarasinghe 48 6.035 ©MIT Fall 2006

J ≤ 7 6

Integer Programming Method

•

g g	 g
FOR I = 0 to 5
A[I+1] = A[I] + 1

•	 FormulationFormulation
–	  an integer vector i̅ such that Â i̅ ≤ b̅ where

–

Â is an integer matrix and b̅ is an integer vector
Â is	an integer matrix and b is an integer vector

•	 Our problem formulation for A[i] and A[i+1]
 integers i i 0 ≤ i i ≤ 5 iiw  iir iw++ 11 = i= ir integers iw, ir 0 ≤ iw, ir ≤ 5 i

– iw  ir is not an affine function

• divide into 2 problems
• Problem 1 with iw < ir and problem 2 with ir < iw

• If either problem has a solution  there exists a dependence

– How about iw+ 1 = irw	 r
• Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1

Saman Amarasinghe 49	 6.035 ©MIT Fall 2006

Integer Programming Formulationg g g
FOR I = 0 to 5

• Problem 1 A[I+1] = A[I] + 1

0 ≤ iw

iw ≤ 5

0 ≤ ir

ir ≤ 5

i i
iw < ir

iw+ 1 ≤ ir

i ≤ iiw+ 1
ir ≤ + 1

Saman Amarasinghe 50 6.035 ©MIT Fall 2006

-

Integer Programming Formulationg g g
FOR I = 0 to 5

• Problem 1 A[I+1] = A[I] + 1

0 ≤ iw  -iw ≤ 0

iw ≤ 5  iw ≤ 5

0 ≤ ir  -ir ≤ 0

ir ≤ 5  ir ≤ 5

i < iir  iiw i ≤
iw  - ir ≤ -11

iw+ 1 ≤ ir  iw - ir ≤ -1

i ≤ iiw+ 1+ 1  -iiw + ir ≤ 1
ir ≤ + i ≤ 1

Saman Amarasinghe 51 6.035 ©MIT Fall 2006

- -

Integer Programming Formulationg g g

• Problem 1 Â b̅
0 ≤ iw  -iw ≤ 0 -1 0 0
iw ≤ 5  iw ≤

 5

1 0 5
0 ≤ ir  -ir ≤ 0 0 -1 0
ir ≤ 5  ir ≤

 5

0 1 5
i i  i i ≤ 1 1 1 1iw < ir  iw - ir ≤ -1 1 -1 -1
iw+ 1 ≤ ir  iw - ir ≤ -1 1 -1 -1
i ≤ i + 1  -i + i ≤ 1 -1 1 1ir ≤ iw+ 1  iw + ir ≤ 1 1 1 1

• and problem 2 with ir < iw

Saman Amarasinghe 52 6.035 ©MIT Fall 2006

and problem 2 with ir < iw

•

Generalization
• An affine loop nest

FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)
……
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

• Solve 2*n problems of the formSolve 2*n problems of the form
• i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn
• i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in
• i1 = j1, i2 = j2,…… in-1 < jn-11 j1 2 j2 n 1 jn 1
• i1 = j1, i2 = j2,…… jn-1 < in-1

…………………
• i1 = j1, i2 < j2
• i1 = j1, j2 < i2

Saman Amarasinghe 53 6.035 ©MIT Fall 2006

1 j1 j2 2

• i1 < j1
• j1 < i1

c eas a a e at o O tu t es

Outline

• Why ParallelismWhy Parallelism

• Parallel Execution

• Parallelizing Compilers

D d A l i• Dependence Analysis

• Increasing Parallelization Opportunitiesg ppo

•

Increasing Parallelization
OpportunitiesOpportunities

• Scalar Privatization
• Reduction Recognition
• Induction Variable IdentificationInduction Variable Identification
• Array Privatization
• Loop Transformations
• Granularity of Parallelismy
• Interprocedural Parallelization

Saman Amarasinghe 55 6.035 ©MIT Fall 2006

•

Scalar Privatization

• Examplep
FOR i = 1 to n
X = A[i] * 3;
B[i] XB[i] = X;

• Is there a loop carried dependence?Is there a loop carried dependence?
• What is the type of dependence?

Saman Amarasinghe 56 6.035 ©MIT Fall 2006

Privatization

• Analysis:
– Any anti- and output- loop-carried dependences

Eli i t b i i i l l t t• Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
[i] * 3Xtmp = A[i] * 3;

B[i] = Xtmp;

• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;

Saman Amarasinghe 57 6.035 ©MIT Fall 2006

p
B[i] = Xtmp[i];

=

Privatization

• Need a final assignment to maintain the correct
value after the loop nestvalue after the loop nest

• Eliminate by assigning in local contextEliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

Eli i t b di i t• Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

Saman Amarasinghe 58 6.035 ©MIT Fall 2006

B[i] Xtmp[i];
X = Xtmp[n];

Another Examplep

• How about loop-carried truep
dependences?

• Example• Example
FOR i = 1 to n
X = X + A[i];[];

• Is this loop parallelizable?p p

Saman Amarasinghe 59 6.035 ©MIT Fall 2006

Reduction Recognitiong

• Reduction Analysis:
– Only associative operations
– The result is never used within the loop

• Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier()Barrier();
If(myPid == 0) {

FOR p = 0 to NUMPROC-1
X = X + Xtmp[p];

Saman Amarasinghe 60 6.035 ©MIT Fall 2006

X X + Xtmp[p];
…

•

=

Induction Variables

• Example
FOR i = 0 to N

A[i] = 2^i;

• After strength reductionAfter strength reduction
t = 1
FOR i = 0 to N

A[i] = t;A[i] t;
t = t*2;

• What happened to loop carried dependences?pp p p
• Need to do opposite of this!

– Perform induction variable analysis

Saman Amarasinghe 61 6.035 ©MIT Fall 2006

– Rewrite IVs as a function of the loop variable

Array Privatizationy

• Similar to scalar privatization

• However, analysis is more complex
– Array Data Dependence Analysis:

Checks if two iterations access the same location
– Array Data Flow Analysis:Array Data Flow Analysis:

Checks if two iterations access the same value

• Transformations
– Similar to scalar privatization

P i t f h d ith

Saman Amarasinghe 62 6.035 ©MIT Fall 2006

– Private copy for each processor or expand with an
additional dimension

Loop Transformations
• A loop may not be parallel as is

E l

p
J

• Example
FOR i = 1 to N-1
FOR j = 1 to N-1

I

j
A[i,j] = A[i,j-1] + A[i-1,j];

Saman Amarasinghe 63 6.035 ©MIT Fall 2006

Loop Transformations
• A loop may not be parallel as is

E l

p
J

• Example
FOR i = 1 to N-1
FOR j = 1 to N-1

I

j
A[i,j] = A[i,j-1] + A[i-1,j]; J

After loop Skewing
I
















 oldnew ii 11

• After loop Skewing
FOR i = 1 to 2*N-3
FORPAR j = max(1,i-N+2) to min(i, N-1)
















 oldnew jj 10

Saman Amarasinghe 64 6.035 ©MIT Fall 2006

A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

=

Granularity of Parallelism y

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

Barrier();

• Example
FOR i = 1 to N 1

J
FOR i 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

I
• Gets transformed into

FOR i = 1 to N-1
Barrier();

j 1 id* ((id 1)* 1)
A[i,j] = A[i,j] + A[i-1,j];

• Inner loop parallelism can be expensive
– Startup and teardown overhead of parallel regions
– Lot of synchronization Lot of synchronization
– Can even lead to slowdowns

Saman Amarasinghe 65 6.035 ©MIT Fall 2006

–

Granularity of Parallelism y

• Inner loop parallelism can be expensivep p p

• Solutions
– Don’t parallelize if the amount of work withinDon t parallelize if the amount of work within

the loop is too small
oror
– Transform into outer-loop parallelism

Saman Amarasinghe 66 6.035 ©MIT Fall 2006

=

Outer Loop Parallelismp

• Example
FOR i = 1 to N 1

J
FOR i 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j]; I

• After Loop Transpose
FOR j = 1 to N-1

i 1 1

I
FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

• Get mapped into
J

• Get mapped into
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1

Saman Amarasinghe 67 6.035 ©MIT Fall 2006

A[i,j] = A[i,j] + A[i-1,j];
Barrier();



Unimodular Transformations

• Interchange, reverse and skewg ,
• Use a matrix transformation

Inew = A Iold Inew A Iold

• Interchange 














 oldnew ii

01
10

Interchange

Reverse
















 oldnew jj 01
















 oldnew ii 01

• Reverse 














 oldnew jj 10

 ii 11 • Skew
Saman Amarasinghe 68 6.035 ©MIT Fall 2006



























old

old

new

new

j
i

j
i

10
11

Legality of Transformationsg y
• Unimodular transformation with matrix A is valid iff.

For all dependence vectors vFor all dependence vectors v
the first non-zero in Av is positive

• Example
 0101

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];




























10
01

1
0

,
0
1

dv

• Interchange 









01
10

A 
























01
10

10
01

01
10



• Reverse 









10
01

A 

























10
01

10
01

10
01



• Skew
Saman Amarasinghe 69 6.035 ©MIT Fall 2006











10
11

A 
























10
11

10
01

10
11



Interprocedural Parallelizationp

• Function calls will make a loop unparallelizatble
– Reduction of available parallelism
– A lot of inner-loop parallelism

• Solutions
I t d l A l i– Interprocedural Analysis

– Inlining

Saman Amarasinghe 70 6.035 ©MIT Fall 2006

Interprocedural Parallelizationp

• Issues
S f ti d ti – Same function reused many times

– Analyze a function on each trace  Possibly exponential
– Analyze a function once  unrealizable path problem

• Interprocedural Analysis
Need to update all the analysis – Need to update all the analysis

– Complex analysis
– Can be expensive

• Inlining
– Works with existing analysis

Saman Amarasinghe 71 6.035 ©MIT Fall 2006

Works with existing analysis
– Large code bloat  can be very expensive

Summaryy

• Multicores are here
– Need parallelism to keep the performance gains
– Programmer defined or compiler extracted parallelism

• Automatic parallelization of loops with arrays
– Requires Data Dependence Analysis
– Iteration space & data space abstraction

A i t bl

•

– An integer programmiing problem

• Many optimizations that’ll increase parallelism Many optimizations that ll increase parallelism

Saman Amarasinghe 72 6.035 ©MIT Fall 2006

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

