Spring 2010
LLoop Optimizations

Instruction Scheduling

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler

Induction Variable Recognition
loop Invariant code motion

Scheduling Loops

e Loop bodies are small

e But, lot of time Is spend In loops due to large
number of iterations

* Need better ways to schedule loops

Loop Example

e Machine

— One load/store unit
* load 2 cycles
o store 2 cycles
— Two arithmetic units
 add 2 cycles
e branch 2 cycles
« multiply 3 cycles
— Both units are pipelined (initiate one op each cycle)
e Source Code

for 1 = 1 to N
Afr] = A[1] * b

Loop Example

e Source Code
for 1 =1 to N

A[i] = A[i] * b
o Assembly Code

loop:
mov (%rdir,%rax), %ril0
imul %rll, %rio
mov %r10, (%rdi,%rax)
sub $4, %rax

Jz loop

base

offset

Loop Example

* Assembly Code

loop:
mov grdi,%rax), %rl0
imul %rll, %rl0
mov $rl0, (%rdi,%rax)
sub $4, %$rax
Jjz loop

* Schedule (9 cycles per iteration)

mov mov

mov mov

imul bge

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler

Induction Variable Recognition
loop Invariant code motion

Loop Unrolling

* Unroll the looppod Yfew times

e Pros:
— Create a much larger basic block for the body
— Eliminate few loop bounds checks

- Cons:
— Much larger program
— Setup code (# of iterations < unroll factor)

— beginning and end of the schedule can still have
unused slots

Loop Example

(%rdi ,%rax), %rl0
%rll, %rl0

%r10, (%rdi,%rax)
$4, %rax

loop

Loop Example

(%rdi ,%rax), %rl0
%r1l, %rl0

%r10, (%rdi,%rax)
$4, %rax

(%rdi ,%rax), %rilo
%ril, %rilo

%r10, (%rdi,%rax)
$4, %rax

loop

: d=14
Loop Example @«

eV srdi,%rax), %rl0 d=9
imul %rll, %rlo0 '

mov $rl0, (%rdi, %rax) : =9
sub $4, S%$rax

mov (%rdi, %$rax), %rl0

imul $rll, %rl0

mov $rl0, (%rdi, %Srax)

sub $4, Srax

Jjz loop

» Schedule (8 cycles per iteration)

mov mov mov

mov mov mov

Loop Unrolling

* Rename registers
— Use different registers in different iterations

Loop Example

srdi, $rax) ,
srll,
, (%rdi, %Srax)
$4, %rax
%$rdi, Srax),
srll,
, (%rdi, %Srax)
$4, %rax
loop

14
a
>
>l
Pl
pel
>l

Loop Example

srdi, $rax) ,
srll,
, (%rdi, %Srax)
$4, %rax
%$rdi, Srax),
srll,
, (%rdi, %Srax)
$4, %rax
loop

14
a
>
>l
Pl
pel
>l

Loop Unrolling

* Rename registers
— Use different registers in different iterations

e Eliminate unnecessary dependencies

again, use more registers to eliminate true, anti and
output dependencies

— eliminate dependent-chains of calculations when
possible

Loop Example

), %rl0
$rl0
(%rdi,)

srdi
srll,
%rl0,
$4,

($rdi,
$rll, %rcx
srcx, (%rdi,
$4/
loop

$rcx

)

>4
e
» el

0
d=2
" ©) e

Loop Example

), %rl0
$rl0
(%rdi,)

srdi,
srll,
%rl0,
$8,

($rdi,
$rll, %rcx
srcx, (%rdi,
$8/
loop

$rcx

)

bl
>l
>l
>l

0
d=2
o

mov
imul
mov
sub
mov
imul
mov
sub

Jjz
» Schedule (4.5 cycles per iteration

Loop Example

$rdi,%rax), %rl0
$rll, %rl0
%$rl0, (%rdi, %Srax)
$8, %rax

$rdi, %$rbx), %$rcx
$rll, %rcx
$rcx, (%rdi,%rbx)
$8, %$rbx
loop

mov mov

mov mov

imul

jz

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler

loop Invariant code motion
Induction Variable Recognition

Software Pipelining

* TrYto overla Pmulti Ple iterations so that the
slots will be filled
e Find the steady-state window so that:

— all the instructions of the loop body Is executed
— but from different iterations

Loop Example

o Assembly Code

loop:
mov
imul
mov
sub

| P4

(%rdi,%rax), %rio
%rll, %rilo0

%r10, (%rdi,%rax)
$4, %rax

loop

e Schedule

mov

Loop Example

* Assembly Code

loop:
mov %$rdi, %rax), %rl0
imul $rll, %rl0
mov %$rl0, (%rdi, %$rax)
sub $4, Srax
jz loop

 Schedule

mov mov1

mov1

mul

mul

Loop Example

* Assembly Code

loop:
mov %$rdi, %rax), %rl0
imul $rll, %rl0
mov %$rl0, (%rdi, %$rax)
sub $4, Srax
jz loop

e Schedule (2 cycles per iteration)

mov1
imuiz _ EXH
jz
mul2

B b2

sub1

Loop Example

* 4 1terations are overlapped
— value of $r11 don’t change

mov1
mul3
jz

mul2

— 4 regs for ($rdi, $rax)
— each addr. incremented by 4*4

— 4 regs to keep value $r10 sub1

— Same registers can be reused
after 4 of these blocks loop:

mov $rdi, %rax), %rl0
generate code for 4 blocks, imal 211, $210

otherwise need to move mov %rl0, (%rdi,%rax)

sub $4, %$rax
jz loop

Software Pipelining

e Optimal use of resources
* Need a lot of registers

— Values in multiple iterations need to be kept
 [ssues In dependencies

— Executing a store instruction in an iteration before branch

Instruction is executed for a previous iteration (writing when
It should not have)

— Loads and stores are issued out-of-order (need to figure-out
dependencies before doing this)

- Code generation Issues

— Generate pre-amble and post-amble code
— Multiple blocks so no register copy Is needed

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler

Induction Variable Recognition

loop Invariant code motion

Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling

Example

4(%rbp), %rax
%rax, %rbx
8(%rbp), %rax
Yrax, %rcx

Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rax
Irax, 3Ircx

Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rax
Irax, 3Ircx

Anti-dependence

How about a different register?

Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rl0
%rl0, %rcx

Anti-dependence
How about a different register?

Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rl0
srl0, %rcx

Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling

Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling

e |If instruction scheduling before register
allocation

Register allocation may spill registers
— Will change the carefully done schedule!!!

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler
Induction Variable Recognition
loop Invariant code motion

Superscalar: Where have all the
transistors gone?

e Qut of order execution

— If an instruction stalls, go beyond that and start
executing non-dependent instructions

— Pros:

« Hardware scheduling
» Tolerates unpredictable latencies

— Cons:
e |nstruction window is small

Superscalar: Where have all the
transistors gone?

* Register renaming

— If there Is an anti or output dependency of a register
that stalls the pipeline, use a different hardware
register

— Pros:
« Avolds anti and output dependencies

— Cons:

« Cannot do more complex transformations to eliminate
dependencies

Hardware vs. Compiler

In a superscalar, hardware and compiler scheduling
can work hand-in-hand

Hardware can reduce the burden when not predictable
by the compiler

Compiler can still greatly enhance the performance

— Large instruction window for scheduling

— Many program transformations that increase parallelism
Compiler is even more critical when no hardware

support
VLIW machines (Itanium, DSPs)

Outline

Scheduling for loops

Loop unrolling

Software pipelining

Interaction with register allocation
Hardware vs. Compiler

Induction Variable Recognition
loop Invariant code motion

Induction Variables

e Example
1 = 200
1 to 100

Induction Variables

e Example
1 = 200
for J = 1 to 100

Basic Induction variable:
J =1, 2,

Index Variable 1 in a(i):
I =200, 199, 198,

Induction Variables

e Example

=2{0]0

for J — 1 to 100
a(i) = 0
1 =1 -1
Basic Induction variable:

N =1, 2

Index Variable 1 in a(i):
I =200, 199, 198,

Induction Variables

e Example

=2{0]0

for J — 1 to 100
a(201 - §j) = O
1 =1 -1
Basic Induction variable:

N =1, 2

Index Variable 1 in a(i):
I =200, 199, 198,

Induction Variables

e Example

for J — 1 to 100
a(201 - j) =0

Basic Induction variable:
J =1, 2,

Index Variable 1 in a(i):
I =200, 199, 198,

What are induction variables?

e X IS an Induction variable of a loop L if
— variable changes its value every iteration of the loop

— the value iIs a function of number of iterations of
the loop

 |In compilers this function is normally a linear
function

— Example: for loop index variable j, function c*j + d

What can we do with induction
variables?

- Use them to perform strength reduction

e Get rid of them

Classification of induction variables

Basic induction variables

— Explicitly modified by the same constant amount
once during each iteration of the loop

— Example: loop index variable

Dependent induction variables

— Can be expressed in the form: a*x + b where a and
be are loop Invariant and x is an induction variable

— Example: 202 - 2*j

Classification of induction variables

Class of induction variables: All induction
variables with same basic variable in their
linear equations

Basis of a class: the basic variable that
determines that class

Finding Basic Induction Variables

e Look inside loop nodes

e Find variables whose only modification Is of
theform j =j + d wheredisaloop

constant

Finding Dependent Induction Variables

Find all the basic induction variables
Search variable k with a single assignment in the loop

Variable assignments of the form k = e op j Or
k = -j where j Is an induction variable and e Is loop
Invariant

Finding Dependent Induction Variables

o Example
for 1 = 1 to 100
J = 1*C
k = jJ+1

A special case

t = 202

for J = 1 to 100
t=1t -2
a(J) = t
t=1t -2
b(J) = t

t = 202
for jJ =
Tt - 2

a(J) = t
Tt - 2

b(J) = t

1 to 100

A special case

[—
uz2 =

O C O C
C SENs

—h
O
1

=

A | I i |
[

200
202

1 = 1 to 100

| I - -
N =

- c

N I
SR SR

Outline

Scheduling for loops

Loop unrolling

Software pipelining

nteraction with register allocation
Hardware vs. Compiler

nduction Variable Recognition
Loop invariant code motion

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

for 1 = 1 to N

1 to N
= 100*N + 10*1 + jJ + X

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

for i = 1 toﬁﬁ\\\
1

1 to N
= 100*N + 10*1 + jJ + X

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N

for i = 1 toﬁﬁ\\\
1

1 to N
= 100*N + 10*1 + jJ + X

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N
X + 1

Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 =1 to N
X =X + 1
= t1 + 10*1 + X
r J =1 to N
a(i,j) = €2 + j

IT OpenCourseWare
ttp://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

