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Scheduling Loops

e Loop bodies are small

e But, lot of time Is spend In loops due to large
number of iterations

* Need better ways to schedule loops




Loop Example

e Machine

— One load/store unit
* load 2 cycles
o store 2 cycles
— Two arithmetic units
 add 2 cycles
e branch 2 cycles
« multiply 3 cycles
— Both units are pipelined (initiate one op each cycle)
e Source Code

for 1 = 1 to N
Afr] = A[1] * b




Loop Example

e Source Code
for 1 =1 to N

A[i] = A[i] * b
o Assembly Code

loop:
mov (%rdir,%rax), %ril0
imul  %rll, %rio
mov %r10, (%rdi,%rax)
sub  $4, %rax

Jz loop

base

offset




Loop Example

* Assembly Code

loop:
mov grdi,%rax), %rl0
imul %rll, %rl0
mov $rl0, (%rdi,%rax)
sub $4, %$rax
Jjz loop

* Schedule (9 cycles per iteration)

mov mov

mov mov

imul bge
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Loop Unrolling

* Unroll the looppod Yfew times

e Pros:
— Create a much larger basic block for the body
— Eliminate few loop bounds checks

- Cons:
— Much larger program
— Setup code (# of iterations < unroll factor)

— beginning and end of the schedule can still have
unused slots




Loop Example

(%rdi ,%rax), %rl0
%rll, %rl0

%r10, (%rdi,%rax)
$4, %rax

loop




Loop Example

(%rdi ,%rax), %rl0
%r1l, %rl0

%r10, (%rdi,%rax)
$4, %rax

(%rdi ,%rax), %rilo
%ril, %rilo

%r10, (%rdi,%rax)
$4, %rax

loop




: d=14
Loop Example @«

eV srdi,%rax), %rl0 d=9
imul  %rll, %rlo0 '

mov $rl0, (%rdi, %rax) : =9
sub $4, S%$rax

mov (%rdi, %$rax), %rl0

imul $rll, %rl0

mov $rl0, (%rdi, %Srax)

sub $4, Srax

Jjz loop

» Schedule (8 cycles per iteration)

mov mov mov

mov mov mov




Loop Unrolling

* Rename registers
— Use different registers in different iterations




Loop Example

srdi, $rax) ,
srll,
, (%rdi, %Srax)
$4, %rax
%$rdi, Srax),
srll,
, (%rdi, %Srax)
$4, %rax
loop
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Loop Example

srdi, $rax) ,
srll,
, (%rdi, %Srax)
$4, %rax
%$rdi, Srax),
srll,
, (%rdi, %Srax)
$4, %rax
loop

14
a
>
>l
Pl
pel
>l




Loop Unrolling

* Rename registers
— Use different registers in different iterations

e Eliminate unnecessary dependencies

again, use more registers to eliminate true, anti and
output dependencies

— eliminate dependent-chains of calculations when
possible




Loop Example

), %rl0
$rl0
(%rdi, )

srdi
srll,
%rl0,
$4,

($rdi,
$rll, %rcx
srcx, (%rdi,
$4/
loop

$rcx

)
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Loop Example

), %rl0
$rl0
(%rdi, )

srdi,
srll,
%rl0,
$8,

($rdi,
$rll, %rcx
srcx, (%rdi,
$8/
loop

$rcx

)

bl
>l
>l
>l

0
d=2
o




mov
imul
mov
sub
mov
imul
mov
sub

Jjz
» Schedule (4.5 cycles per iteration

Loop Example

$rdi,%rax), %rl0
$rll, %rl0
%$rl0, (%rdi, %Srax)
$8, %rax

$rdi, %$rbx), %$rcx
$rll, %rcx
$rcx, (%rdi,%rbx)
$8, %$rbx
loop

mov mov

mov mov

imul

jz
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Software Pipelining

* TrYto overla Pmulti Ple iterations so that the
slots will be filled
e Find the steady-state window so that:

— all the instructions of the loop body Is executed
— but from different iterations




Loop Example

o Assembly Code

loop:
mov
imul
mov
sub

| P4

(%rdi,%rax), %rio
%rll, %rilo0

%r10, (%rdi,%rax)
$4, %rax

loop

e Schedule

mov




Loop Example

* Assembly Code

loop:
mov %$rdi, %rax), %rl0
imul $rll, %rl0
mov %$rl0, (%rdi, %$rax)
sub $4, Srax
jz loop

 Schedule

mov mov1

mov1

mul

mul




Loop Example

* Assembly Code

loop:
mov %$rdi, %rax), %rl0
imul $rll, %rl0
mov %$rl0, (%rdi, %$rax)
sub $4, Srax
jz loop

e Schedule (2 cycles per iteration)

mov1
imuiz _ EXH
jz
mul2

B b2

sub1




Loop Example

* 4 1terations are overlapped
— value of $r11 don’t change

mov1
mul3
jz

mul2

— 4 regs for ($rdi, $rax)
— each addr. incremented by 4*4

— 4 regs to keep value $r10 sub1

— Same registers can be reused
after 4 of these blocks loop:

mov $rdi, %rax), %rl0
generate code for 4 blocks, imal 211, $210

otherwise need to move mov  %rl0, (%rdi,%rax)

sub $4, %$rax
jz loop




Software Pipelining

e Optimal use of resources
* Need a lot of registers

— Values in multiple iterations need to be kept
 [ssues In dependencies

— Executing a store instruction in an iteration before branch

Instruction is executed for a previous iteration (writing when
It should not have)

— Loads and stores are issued out-of-order (need to figure-out
dependencies before doing this)

- Code generation Issues

— Generate pre-amble and post-amble code
— Multiple blocks so no register copy Is needed
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Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling




Example

4(%rbp), %rax
%rax, %rbx
8(%rbp), %rax
Yrax, %rcx




Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rax
Irax, 3Ircx




Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rax
Irax, 3Ircx




Anti-dependence

How about a different register?




Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rl0
%rl0, %rcx

Anti-dependence
How about a different register?



Example

4 (5rbp), %rax
srax, %rbx
8 (3rbp), %rl0
srl0, %rcx




Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling




Register Allocation

and Instruction Scheduling

o |If register allocation Is before instruction
scheduling

— restricts the choices for scheduling

e |If instruction scheduling before register
allocation

Register allocation may spill registers
— Will change the carefully done schedule!!!
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Superscalar: Where have all the
transistors gone?

e Qut of order execution

— If an instruction stalls, go beyond that and start
executing non-dependent instructions

— Pros:

« Hardware scheduling
» Tolerates unpredictable latencies

— Cons:
e |nstruction window is small




Superscalar: Where have all the
transistors gone?

* Register renaming

— If there Is an anti or output dependency of a register
that stalls the pipeline, use a different hardware
register

— Pros:
« Avolds anti and output dependencies

— Cons:

« Cannot do more complex transformations to eliminate
dependencies




Hardware vs. Compiler

In a superscalar, hardware and compiler scheduling
can work hand-in-hand

Hardware can reduce the burden when not predictable
by the compiler

Compiler can still greatly enhance the performance

— Large instruction window for scheduling

— Many program transformations that increase parallelism
Compiler is even more critical when no hardware

support
VLIW machines (Itanium, DSPs)
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Induction Variables

e Example
1 = 200
1 to 100




Induction Variables

e Example
1 = 200
for J = 1 to 100

Basic Induction variable:
J =1, 2,

Index Variable 1 in a(i):
I =200, 199, 198,




Induction Variables

e Example

=2{0]0

for J — 1 to 100
a(i) = 0
1 =1 -1
Basic Induction variable:

N =1, 2

Index Variable 1 in a(i):
I =200, 199, 198,




Induction Variables

e Example

=2{0]0

for J — 1 to 100
a(201 - §j) = O
1 =1 -1
Basic Induction variable:

N =1, 2

Index Variable 1 in a(i):
I =200, 199, 198,




Induction Variables

e Example

for J — 1 to 100
a(201 - j) =0

Basic Induction variable:
J =1, 2,

Index Variable 1 in a(i):
I =200, 199, 198,




What are induction variables?

e X IS an Induction variable of a loop L if
— variable changes its value every iteration of the loop

— the value iIs a function of number of iterations of
the loop

 |In compilers this function is normally a linear
function

— Example: for loop index variable j, function c*j + d




What can we do with induction
variables?

- Use them to perform strength reduction

e Get rid of them




Classification of induction variables

Basic induction variables

— Explicitly modified by the same constant amount
once during each iteration of the loop

— Example: loop index variable

Dependent induction variables

— Can be expressed in the form: a*x + b where a and
be are loop Invariant and x is an induction variable

— Example: 202 - 2*j




Classification of induction variables

Class of induction variables: All induction
variables with same basic variable in their
linear equations

Basis of a class: the basic variable that
determines that class




Finding Basic Induction Variables

e Look inside loop nodes

e Find variables whose only modification Is of
theform j =j + d wheredisaloop

constant




Finding Dependent Induction Variables

Find all the basic induction variables
Search variable k with a single assignment in the loop

Variable assignments of the form k = e op j Or
k = -j where j Is an induction variable and e Is loop
Invariant




Finding Dependent Induction Variables

o Example
for 1 = 1 to 100
J = 1*C
k = jJ+1




A special case

t = 202

for J = 1 to 100
t=1t -2
a(J) = t
t=1t -2
b(J) = t




t = 202
for jJ =
Tt - 2

a(J) = t
Tt - 2

b(J) = t

1 to 100

A special case
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Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

for 1 = 1 to N

1 to N
= 100*N + 10*1 + jJ + X




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

for i = 1 toﬁﬁ\\\
1

1 to N
= 100*N + 10*1 + jJ + X




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N

for i = 1 toﬁﬁ\\\
1

1 to N
= 100*N + 10*1 + jJ + X




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 = 1 to N
X + 1




Loop Invariant Code Motion

 |f a computation produces the same value In
every loop iteration, move It out of the loop

tl = 100*N
for 1 =1 to N
X =X + 1
= t1 + 10*1 + X
r J =1 to N
a(i,j) = €2 + j
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