
Massachusetts Institute of T

MIT 6.035
F d ti f D t fl A l iFoundations of Dataflow Analysis

Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology
echnology

•

Dataflow Analysisy

• Compile-Time Reasoning Aboutp g
• Run-Time Values of Variables or Expressions
• At Different Program PointsAt Different Program Points

– Which assignment statements produced value of
variable at this point?variable at this point?

– Which variables contain values that are no longer
used after this program point?used after this program point?

– What is the range of possible values of variable at
this program point?this program point?

Program Representationg p

• Control Flow Graphp
– Nodes N – statements of program
– Edges E – flow of controlg

• pred(n) = set of all predecessors of n
• succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinalfinal

• –

Program Pointsg

• One program point before each nodep g p
• One program point after each node
• Join point point with multiple predecessors Join point point with multiple predecessors
• Split point – point with multiple successors

•

Basic Idea

• Information about program represented usingp g p g
values from algebraic structure called lattice

• Analysis produces lattice value for eachAnalysis produces lattice value for each
program point

• Two flavors of analysisTwo flavors of analysis
– Forward dataflow analysis

B k d d t fl l i– Backward dataflow analysis

Forward Dataflow Analysisy
• Analysis propagates values forward through control

flow graph with flow of control
– Each node has a transfer function f

• Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor
nodes to program points before successor nodes

– At join points, values are combined using a merge
function

• Canonical Example: Reaching Definitions

Backward Dataflow Analysisy
• Analysis propagates values backward through control

flow graph against flow of control
– Each node has a transfer function f

• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor
nodes to program points after predecessor nodes

– At split points, values are combined using a merge
function

– Canonical Example: Live Variables

–

Partial Orders

• Set P
• Partial order ≤ such that ∀x,y,z∈P

– x ≤ x (reflexive)x ≤ x (reflexive)
– x ≤ y and y ≤ x implies x = y (asymmetric)

x ≤ y and y ≤ z implies x ≤ z (transitive)x ≤ y and y ≤ z implies x ≤ z (transitive)
• Can use partial order to define

U d l b d– Upper and lower bounds
– Least upper bound
– Greatest lower bound

Upper Boundspp

• If S ⊆ P then
– x∈P is an upper bound of S if ∀y∈S. y ≤ x
– x∈P is the least upper bound of S if pp

• x is an upper bound of S, and
• x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound, lub, supremum, sup
• ∨ S is the least upper bound of S
• x ∨ y is the least upper bound of {x,y}

Lower Bounds

• If S ⊆ P then
– x∈P is a lower bound of S if ∀y∈S. x ≤ y
– x∈P is the greatest lower bound of S if g

• x is a lower bound of S, and
• y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound, glb, infimum, inf
• ∧ S is the greatest lower bound of S g
• x ∧ y is the greatest lower bound of {x,y}

Coveringg

• x< y if x ≤ y and x≠yy y y
• x is covered by y (y covers x) if

– x < y and x < y, and
– x ≤ z < y implies x = z

• Conceptually y covers x if there are no • Conceptually, y covers x if there are no
elements between x and y

Examplep
• P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
• x ≤ y if (x bitwise and y) = x

111
Hasse Diagram

• If y covers x
011

101
110

• If y covers x
• Line from y to x

010

001 100

• y above x in diagram

000

•

Lattices

• If x ∧ y and x ∨ y exist for all x,y∈P,y y y
then P is a lattice.

• If ∧S and ∨S exist for all S ⊆ P,If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

• All finite lattices are completeAll finite lattices are complete

Lattices
• If x ∧ y and x ∨ y exist for all x,y∈P,

then P is a lattice.
• If ∧S and ∨S exist for all S ⊆ P,

then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete

– Integers I
– For any x, y∈I, x ∨ y = max(x,y), x ∧ y = min(x,y)
– But ∨ I and ∧ I do not exist

I ∪ {+∞ ∞ } is a complete lattice – I ∪ {+∞,−∞ } is a complete lattice

Top and Bottomp

• Greatest element of P (if it exists) is top() p
• Least element of P (if it exists) is bottom (⊥)

Connection Between ≤, ∧, and ∨, ,
• The following 3 properties are equivalent:

– x ≤ yy
– x ∨ y = y
– x ∧ y = x

• Will prove:
– x ≤ y implies x ∨ y = y and x ∧ y = x
– x ∨ y = y implies x ≤ y
– x ∧ y = x implies x ≤ y

Th b i i i b i• Then by transitivity, can obtain
– x ∨ y = y implies x ∧ y = x

x ∧ y x implies x ∨ y y– x ∧ y = x implies x ∨ y = y

• =

Connecting Lemma Proofsg

• Proof of x ≤ y implies x ∨ y = yy p y y
– x ≤ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y ≤ z.y pp { ,y} y y
– So y is least upper bound of {x,y} and x ∨ y = y

• Proof of x ≤ y implies x ∧ y = xProof of x ≤ y implies x ∧ y x
– x ≤ y implies x is a lower bound of {x,y}.

Any lower bound z of {x y} must satisfy z ≤ x– Any lower bound z of {x,y} must satisfy z ≤ x.
– So x is greatest lower bound of {x,y} and x ∧ y = x

Connecting Lemma Proofsg

• Proof of x ∨ y = y implies x ≤ yy y p y
– y is an upper bound of {x,y} implies x ≤ y

• Proof of x ∧ y = x implies x ≤ yProof of x ∧ y x implies x ≤ y
– x is a lower bound of {x,y} implies x ≤ y

Lattices as Algebraic Structuresg

• Have defined ∨ and ∧ in terms of ≤

• Will now define ≤ in terms of ∨ and ∧
– Start with ∨ and ∧ as arbitrary algebraic operations Start with ∨ and ∧ as arbitrary algebraic operations

that satisfy associative, commutative, idempotence,
and absorption lawsp

– Will define ≤ using ∨ and ∧

– Will show that ≤ is a partial orderp
• Intuitive concept of ∨ and ∧ as information

combination operators (or and) combination operators (or, and)

=

– =

Algebraic Properties of Latticesg p

Assume arbitrary operations ∨ and ∧ such that
y p
– (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
– (x ∧ y)y) ∧ z = x ∧ (y ∧ z)) (associativityy of ∧)((y ()
– x ∨ y = y ∨ x (commutativity of ∨)
– x ∧ y = yy ∧∧ xx (commutativity of ∧)
x ∧ y (commutativity of ∧)
– x ∨ x = x (idempotence of ∨)
– x ∧ x = xx (idempotence of ∧)x ∧ x (idempotence of ∧)
– x ∨ (x ∧ y) = x (absorption of ∨ over ∧)

x ∧ (x ∨ y) = x (absorption of ∧ over ∨)x ∧ (x ∨ y) x (absorption of ∧ over ∨)

Connection Between ∧ and ∨

• x ∨ y = y if and only if x ∧ y = xy y y y
• Proof of x ∨ y = y implies x = x ∧ y

x = x ∧ (x ∨ y) (by absorption) x x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

• Proof of x ∧ y x implies y = x ∨ y• Proof of x ∧ y = x implies y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

() (b i i)= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)

= = =

Properties of ≤p

• Define x 	≤ yy if x ∨ yy = yy
• Proof of transitive property. Must show that

x ∨ y = y and y y and y ∨∨ zz = z implies x ∨ z = zz
x ∨ y z implies x ∨ z

x ∨ z = x ∨ (y ∨ z) (by assumption)

= ((x ∨ y)) ∨ z (by associiativit ity))
(b	 ti
= y ∨ z	 (by assumption)
= z (by assumption)(b i)

=

Properties of ≤p

• Proof of asymmetry property. Must show thaty y p p y
x ∨ y = y and y ∨ x = x implies x = y

x = y ∨ x (by assumption) x y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption) y (by assumption)

• Proof of reflexivity property. Must show that
x ∨ x = x

x ∨ x = x (by idempotence)

Properties of ≤p

•	 Induced opperation ≤ aggrees with origginal

definitions of ∨ and ∧, i.e.,

–	x ∨ y = sup {x, y}y p { , y}
– x ∧ y = inf {x, y}

Proof of x ∨ y = sup {x, y}y p { , y}

• Consider any upper bound u for x and yy.y pp
• Given x ∨ u = u and y ∨ u = u, must show

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = uu
x ∨ y ≤ u, i.e., (x ∨ y) ∨ u

u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)

Proof of x ∧ y = inf {x, y}y { , y}

• Consider anyy lower bound l for x and yy.
• Given x ∧ l = l and y ∧ l = l, must show

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = ll
l ≤ x ∧ y, i.e., (x ∧ y) ∧ l

l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)

Chains

• A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ yy y y
• P has no infinite chains if every chain in P is

finitefinite
• P satisfies the ascending chain condition if

for all sequences x ≤ x ≤ there exists n for all sequences x1 ≤ x2 ≤ …there exists n
such that xn = xn+1 = …

Application to Dataflow Analysispp y

• Dataflow information will be lattice values
– Transfer functions operate on lattice values
– Solution algorithm will generate increasingg g g

sequence of values at each program point
– Ascending chain condition will ensure terminationg

• Will use ∨ to combine values at control-flow
join pointsjoin points

Transfer Functions

• Transfer function f: P→P for each node in
control flow graph

• f models effect of the node on the programf models effect of the node on the program
information

–

Transfer Functions
Each dataflow analysis problem has a set F of

t f f ti f P→Ptransfer functions f: P→P
– Identity function i∈F

b l d d i i – F must be closed under composition:
∀f,g∈F. the function h = λx.f(g(x)) ∈F
E h f F t b t– Each f ∈F must be monotone:
x ≤ y implies f(x) ≤ f(y)

Sometimes all f F are distrib ti e: – Sometimes all f ∈F are distributive:
f(x ∨ y) = f(x) ∨ f(y)

Distributivity implies monotonicityDistributivity implies monotonicity

• = =

Distributivity Implies Monotonicityy p y

• Proof of distributivityy impplies monotonicityy
• Assume f(x ∨ y) = f(x) ∨ f(y)
• Must show: x ∨ y = y implies f(x) y implies f(x) ∨∨ f(y) = f(y) f(y) f(y)Must show: x ∨ y

f(y) = f(x ∨ y) (by assumption)

= f(x) ∨ f(y) (by distributivity)f() f() (b di t ib ti it)

Putting Pieces Togetherg g

• Forward Dataflow Analysis Frameworky
• Simulates execution of program forward with

flow of controlflow of control

Forward Dataflow Analysis
• Simulates execution of program forward with

flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given inn, computes outn)

• Require that solution satisfy
– ∀n. outn = fn(inn)
– ∀n ≠ n0. inn = ∨ { outm . m in pred(n) }
– inn0 = I
– Where I summarizes information at start of program

•

Dataflow Equationsq

• Compiler processes program to obtain a set ofp p p g
dataflow equations

outn := fn(inn) n n(n)
inn := ∨ { outm . m in pred(n) }

• Conceptually separates analysis problem fromConceptually separates analysis problem from
program

Worklist Algorithm for Solving
F d D t fl E ti Forward Dataflow Equations

for each n do out for each n do outn := f := fn((⊥⊥))

inn0 := I; outn0 := fn0(I)

worklist := N { n
worklist := N - { n0 }}
while worklist ≠ ∅ do

remove a node n from worklist
remove a node n from worklist

inn := ∨ { outm . m in pred(n) }

outnn ::= ffn(innn))
out n(in
if outn changed then

worklist := worklist ∪ succ(n)
()

Correctness Argumentg

• Why result satisfies dataflow equationsy q
• Whenever process a node n, set outn := fn(inn)

Algorithm ensures that outn = fn(inn)g n n(n)
• Whenever outm changes, put succ(m) on worklist.

Consider any node n ∈ succ(m). It will eventually comey () y
off worklist and algorithm will set

inn := ∨ { outm . m in pred(n) }
to ensure that inn = ∨ { outm . m in pred(n) }

• So final solution will satisfy dataflow equations

•

Termination Argumentg

• Why does algorithm terminate?y g
• Sequence of values taken on by inn or outn is a

chain. If values stop increasing, worklistchain. If values stop increasing, worklist
empties and algorithm terminates.

• If lattice has ascending chain propertyIf lattice has ascending chain property,
algorithm terminates

Algorithm terminates for finite lattices – Algorithm terminates for finite lattices
– For lattices without ascending chain property, use

widening operatorwidening operator

Widening Operatorsg p
• Detect lattice values that may be part of infinitely

ascending chain
• Artificially raise value to least upper bound of chain
• Example:

– Lattice is set of all subsets of integers
– Could be used to collect possible values taken on by

variable during execution of program
– Widening operator might raise all sets of size n or

greater to TOP (likely to be useful for loops)

Reaching Definitionsg
• P = powerset of set of all definitions in program (all

subsets of set of definitions in program)
• ∨ = ∪ (order is ⊆)
• ⊥ = ∅

• I = inn0 = ⊥

• F = all functions f of the form f(x) = a ∪ (x-b)
– b is set of definitions that node kills
– a is set of definitions that node generates

• General pattern for many transfer functions
– f(x) = GEN ∪ (x-KILL)

=

Does Reaching Definitions
F k S ti f P ti ?Framework Satisfy Properties?

•	 ⊆ satisfies conditions for ≤

– x ⊆ y and y ⊆ z implies x ⊆ z (transitivity)

– x ⊆ y and y ⊆ x implies y = x (asymmetry)

– x ⊆ x (idempotence)

•	 F satisfies transfer function conditions
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity)

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
= f(x ∪ y)f(x ∪ y)

Does Reaching Definitions
F k S ti f P ti ?Framework Satisfy Properties?

•	 What about compposition?

– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2)

– Must show f11((f22(()) x)) can be exppressed as a ∪ ((x - b))

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1

– Then f1(f2(x)) = a ∪ (x – b)

General Result

All GEN/KILL transfer function frameworks
satisfy
– Identityy
– Distributivity
– CompositionComposition

Properties

Available Expressionsp
• P = powerset of set of all expressions in

program (all subsets of set of expressions)
• ∨ = ∩ (order is ⊇)
• ⊥ = P
• I = inn0 = ∅ n0
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of expressions that node killsb is set of expressions that node kills
– a is set of expressions that node generates

• Another GEN/KILL analysisAnother GEN/KILL analysis

Concept of Conservatismp

• Reaching definitions use ∪ as joing j
– Optimizations must take into account all definitions

that reach along ANY path
• Available expressions use ∩ as join

– Optimization requires expression to reach alongOptimization requires expression to reach along
ALL paths

• Optimizations must conservatively take allOptimizations must conservatively take all
possible executions into account. Structure of
analysis varies according to way analysis used.analysis varies according to way analysis used.

Backward Dataflow Analysis
•	 Simulates execution of program backward against

the flow of control

y

•	 For each node n, have
–	innn – value at program ppoint before np g

– outn – value at program point after n

–	fnn – transfer function for n (given outnn p n)(g	 , computes inn)

•	 Require that solution satisfies
–	∀n. innn = fnn((outnn))
–	∀n ∉ Nfinal. outn = ∨ { inm . m in succ(n) }
–	∀n ∈ Nfinal = outn = O final n
– Where O summarizes information at end of program

Worklist Algorithm for Solving
B k d D t fl E ti Backward Dataflow Equations

for each n do inn := fn(⊥)n n
for each n ∈ Nfinal do outn := O; inn := fn(O)

worklist := N - Nfinal

while worklist ≠ ∅ do

remove a node n from worklist

outn := ∨ { inm . m in succ(n) }

inn := fn(outn)

if inn changed then

worklist := worklist ∪ pred(n)

Live Variables

• P = powerset of set of all variables in programp p g
(all subsets of set of variables in program)

• ∨ = ∪ (order is ⊆)∨ ∪ (order is ⊆)
• ⊥ = ∅

O ∅• O = ∅

• F = all functions f of the form f(x) = a ∪ (x-b)
– b is set of variables that node kills
– a is set of variables that node reads

Meaning of Dataflow Resultsg
• Concept of program state s for control-flow graphs

• Program point n where execution located
(n is node that will execute next)

• Values of variables in program
• Each execution generates a trajectory of states:

– s0;s1;…;sk,where each si ∈ST
– si+1 generated from si by executing basic block to i+1 g i y g

• Update variable values
• Obtain new program point np g p

Relating States to Analysis Resultg	 y
•	 Meaning of analysis results is given by an

abstraction function AF:ST→P

•	 Correctness condition: require that for all states s

AF(s) ≤ inn
where n is the next statement to execute in state s

Sign Analysis Exampleg y p

• Sign analysis - compute sign of each variable vg y p g
• Base Lattice: P = flat lattice on {-,0,+}

TOP

- 0 +

TOP

0

BOTBOT
• Actual lattice records a value for each variable

– Example element: [a→+ b→0 c→-]Example element: [a→+, b→0, c→]

•

Interpretation of Lattice Valuesp

• If value of v in lattice is:
– BOT: no information about sign of v
– -: variable v is negativeg
– 0: variable v is 0
– +: variable v is positive+: variable v is positive
– TOP: v may be positive or negative

• What is abstraction function AF?What is abstraction function AF?
– AF([x1,…,xn]) = [sign(x1), …, sign(xn)]

Wh i () 0 if 0 + if > 0 if < 0 – Where sign(x) = 0 if x = 0, + if x > 0, - if x < 0

Operation ⊗ on Latticep

⊗ BOT - 0 + TOP

BOT BOT - 0 + TOP

- - + 0 - TOP

00 00 00 00 00 00

+ + - 0 + TOP

TOP TOP TOP 0 TOP TOP

•

Transfer Functions

• If n of the form v = c
– fn(x) = x[v→+] if c is positive
– fn(x) = x[v→0] if c is 0 n() []
– fn(x) = x[v→-] if c is negative

• If n of the form v = v *vIf n of the form v1 v2 v3
– fn(x) = x[v1→x[v2] ⊗ x[v3]]

I TOP • I = TOP
(uninitialized variables may have any sign)

[+ b +]

[, ,]

Examplep
a = 1

[a→+][a→+]

b = -1 b = 1

[a→+ b→] [a→+, b→+][a→+, b→-]

[a→+ b→TOP] [a→+, b→TOP]
c = a*b

[a→+, b→TOP,c →TOP]

[+ b +]

Imprecision In Examplep p
a = 1

Abstraction Imprecision:
[a→1] abstracted as [a→+]

[a→+][a→+]

[a→1] abstracted as [a→+]

b = -1 b = 1

[a→+ b→] [a→+, b→+][a→+, b→-]

[a→+ b→TOP] [a→+, b→TOP]
c = a*bControl Flow Imprecision:

[b→TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]≠TOP

–

bst act o u ct o t ows a o at o

General Sources of Imprecisionp
• Abstraction Imprecision

Concrete values (integers) abstracted as lattice values (0 and +) Concrete values (integers) abstracted as lattice values (-,0, and +)
– Lattice values less precise than execution values
– Abstraction function throws away informationway

• Control Flow Imprecision
– One lattice value for all possible control flow pathsp p
– Analysis result has a single lattice value to summarize results of

multiple concrete executions
– Join operation ∨ moves up in lattice to combine values from

different execution paths
– Typically if x ≤ y then x is more precise than y Typically if x ≤ y, then x is more precise than y

Why Have Imprecisiony p

• Make analysis tractabley
• Unbounded sets of values in execution

– Typically abstracted by finite set of lattice valuesTypically abstracted by finite set of lattice values
• Execution may visit unbounded set of states

Ab t t d b ti j i f diff t th– Abstracted by computing joins of different paths

Abstraction Function
• AF(s)[v] = sign of v

AF(n [a→5 b→0 c→ 2]) = [a→+ b→0 c→]– AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-]
• Establishes meaning of the analysis results

– If analysis says variable has a given sign
– Always has that sign in actual execution

• Correctness condition:
– ∀ v. AF(s)[v] ≤ inn[v] (n is node for s)()[] n[] ()
– Reflects possibility of imprecision

Abstraction Function Soundness

• Will show
∀ v. AF(s)[v] ≤ inn[v] (n is node for s)

by induction on length of computation thatby induction on length of computation that
produced s

B• Base case:
– ∀ v. inn0[v] = TOP, which implies that
– ∀ v. AF(s)[v] ≤ TOP

Induction Step
• Assume ∀ v. AF(s)[v] ≤ inn[v] for computations of length k
• Prove for computations of length k+1

Proof:• Proof:
– Given s (state), n (node to execute next), and inn
– Find p (the node that just executed), sp(the previous state),p (j), p(p),

and inp
– By induction hypothesis ∀ v. AF(sp)[v] ≤ inp[v]

Case analysis on form of n – Case analysis on form of n
• If n of the form v = c, then

– s[v] = c and outp [v] = sign(c), so[] p [] g ()
AF(s)[v] = sign(c) = outp [v] ≤ inn[v]

– If x≠v, s[x] = sp [x] and outp [x] = inp[x], so
AF(s)[x] = AF(s)[x] ≤ in [x] = out [x] ≤ in [x]AF(s)[x] AF(sp)[x] ≤ inp[x] outp [x] ≤ inn[x]

• Similar reasoning if n of the form v1 = v2*v3

Augmented Execution Statesg

• Abstraction functions for some analyses requirey q
augmented execution states
– Reaching definitions: states are augmented withg g

definition that created each value
– Available expressions: states are augmented with

expression for each value

Meet Over Paths Solution
• What solution would be ideal for a forward dataflow

analysis problem?
• Consider a path p = n0, n1, …, nk, n to a node n

(note that for all i ni ∈ pred(ni+1))
• The solution must take this path into account:

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn

• So the solution must have the property that
{f (⊥) i th t } ≤ i∨{fp (⊥) . p is a path to n} ≤ inn

and ideally
{f () i h } i∨{fp (⊥) . p is a path to n} = inn

–

Soundness Proof of Analysis
Al ithAlgorithm

• Property to prove:p y p
For all paths p to n, fp (⊥) ≤ inn

• Proof is by induction on length of pProof is by induction on length of p
– Uses monotonicity of transfer functions

Uses following lemmaUses following lemma
• Lemma:

W kli l i h d l i h hWorklist algorithm produces a solution such that
fn(inn) = outn

if n ∈ pred(m) then outn ≤ inm

–

Proof

• Base case: p is of length 1p g
– Then p = n0 and fp(⊥) = ⊥ = inn0

• Induction step:Induction step:
– Assume theorem for all paths of length k

Show for an arbitrary path p of length k+1Show for an arbitrary path p of length k+1

Induction Step Proofp
• p = n0, …, nk, n
• Must show fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

– By induction (fk-1(…fn1(fn0(⊥)) …)) ≤ innk y (k 1(n1(n0()))) nk

– Apply fk to both sides, by monotonicity we get
fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk)

– By lemma, fk(innk) = outnk

– By lemma, outnk ≤ inn y nk n

– By transitivity, fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

=

Distributivityy

•	 Distributivity preserves pprecisiony p
•	 If framework is distributive, then worklist

algorithm produces the meet over paths solutionalgorithm produces the meet over paths solution
– For all n:

∨{fp (⊥) . p is a path to n} inn ∨{f (⊥) p is a path to n} = in

Lack of Distributivity Exampley p
• Constant Calculator
• Flat Lattice on Integers

TOP

-1 10

TOP

-2 2 …1 10

BOT

2…

• Actual lattice records a value for each variable
E l l t [3 b 2 5]

BOT

– Example element: [a→3, b→2, c→5]

Transfer Functions

• If n of the form v = c
– fn(x) = x[v→c]

• If n of the form v1 = v2+v3 If n of the form v1 v2+v3
– fn(x) = x[v1→x[v2] + x[v3]]

• Lack of distributivity • Lack of distributivity
– Consider transfer function f for c = a + b

f([3 b 2]) f([2 b 3]) [TOP b TOP 5]– f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5]
– f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) =

[a→TOP, b→TOP, c→TOP][, ,]

Lack of Distributivity Anomalyy y

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→TOP, b→TOP]
c = a+b Lack of Distributivity Imprecision:

[TOP b TOP 5] i c a b
[a→TOP, b→TOP, c →TOP]

[a→TOP, b→TOP, c→5] more precise

What is the meet over all paths solution?

{[2 b 3 5] [3 b 2 5]}

How to Make Analysis Distributivey

• Keep combinations of values on different pathsp p

a = 2 a = 3a 2
b = 3

a 3
b = 2

{[a→3 b→2]}{[a→2 b→3]} {[a→3, b→2]}{[a→2, b→3]}

{[2 b 3] [3 b 2]}{[a→2, b→3], [a→3, b→2]}
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]}

Issues

• Basically simulating all combinations of valuesy g
in all executions
– Exponential blowupp p
– Nontermination because of infinite ascending chains

• Nontermination solutionNontermination solution
– Use widening operator to eliminate blowup

(can make it work at granularity of variables)(can make it work at granularity of variables)
– Loses precision in many cases

==

Multiple Fixed Pointsp
• Dataflow analysis generates least fixed point
• May be multiple fixed points
• Available expressions example

a = x +y
0

1 a = x +y
0

i == 0

1

0

a x y

i 0

1

1
i 0

b +

0
00

i == 0
1

11
nopb = x+y;

01
nopb = x+y;

11

–

Pessimistic vs. Optimistic Analysesp	 y
•	 Available expressions is optimistic

(for common sub-expression elimination)

–	 Assumes expressions are available at start of analysis
–	 Analysis eliminates all that are not available
–	 If analysis result in ≤ e, can use e for CSE can use e for CSEIf	analysis result inn ≤ e
–	 Cannot stop analysis early and use current result

•	 Live variables is pessimistic (for dead code elimination)
–	 Assumes all variables are live at start of analysis
– Analysis finds variables that are dead

If e ≤ analysis result in can use e for dead code elimination If	e ≤ analysis result inn, can use e for dead code elimination
–	 Can stop analysis early and use current result

•	 Optimism/pessimism depends on intended use
• Formal dataflow setup same for both analyses

•

Summaryy

• Formal dataflow analysis frameworky
– Lattices, partial orders
– Transfer functions, joins and splits, j p
– Dataflow equations and fixed point solutions

• Connection with programConnection with program
– Abstraction function AF: S → P

For any state s and program point n AF(s) ≤ in– For any state s and program point n, AF(s) ≤ inn

– Meet over all paths solutions, distributivity

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

