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Program Analysisg y 

• Compile-time reasoning about run-time behavior 
of program 
– Can discover things that are always true: 

“ i  l  1  i  th  t  t  t  ”• “x is always 1 in the statement y = x + z” 
• “the pointer p always points into array a” 
• “the statement return 5 can never execute” 

– Can infer things that are likely to be true: 
• “the reference r usually refers to an object of class C” 
• “the statement a = b + c  appears to execute more frequently • the statement a = b + c appears to execute more frequently 

than the statement x = y + z” 

– Distinction between data and control-flow properties 
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•

Transformations 

• Use analysis results to transform program 
• Overall goal: improve some aspect of program 
• Traditional goals: 

R d  b  f  d  i  i– Reduce number of executed instructions 
– Reduce overall code size 

• Other goals emerge as space becomes more complexOther goals emerge as space becomes more complex 
– Reduce number of cycles 

• Use vector or DSP instructions 
• Improve instruction or data cache hit rate 

– Reduce power consumption 
– Reduce memory usage 
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Reduce memory usage 
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Control Flow Graphp

• Nodes Represent Computationp p 
– Each Node is a Basic Block 
– Basic Block is a Sequence of Instructions withq 

• No Branches Out Of Middle of Basic Block 
• No Branches Into Middle of Basic Block 
• Basic Blocks should be maximal 

– Execution of basic block starts with first 
instruction 

– Includes all instructions in basic block 
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• Edges Represent Control Flow 
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Control Flow Graph s = 0; p 

into add(n, k) { 

a = 4; 
i = 0; 

k 0 s = 0; a = 4; i = 0; 
if (k == 0) 

b 1 

k == 0 

b = 1; 
else 

b =  2;  

b = 1;b = 2; 

b 2; 
while (i < n) { 

s = s + a*b; 

i < n 

+ *b  
; 

i = i + 1; 
} 

s = s + a*b; 
i = i + 1; 

return s; 

Saman Amarasinghe 7 6.035 ©MIT Fall 1998 

return s; 
} 



•

Basic Block Construction 

• Start with instruction control-flow graphg p
• Visit all edges in graph 
• Merge adjacent nodes ifMerge adjacent nodes if 

– Only one edge from first node 
Only one edge into second node– Only one edge into second node 

s = 0; 

a = 4; 

s = 0; 
a = 4; 
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s = 0; s = 0;

a = 4;

a = 4;

i = 0;

k == 0k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;
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i i + 1;



s = 0; s = 0;

a = 4; a = 4;
i = 0;

i = 0;

k == 0k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;
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s = 0; s = 0;

a = 4;
a = 4;
i = 0;

k == 0i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;
return s;

s = s + a*b;
i = i + 1;
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i = i + 1;



s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;
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i i + 1;



s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;
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s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;
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i i + 1;
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Program Points, Split and Join 
PointsPoints


•	 One program point before and after each 
statement in program 

•	 Split point has multiple successors – conditional 
branch statements only split points 

•	 Merge point has multiple predecessors 
•	 Each basic block 

– Either starts with a merge point or its 

predecessor ends with a split point


– Either ends with a split point or its successor 
i h  istarts with a merge point 
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Basic Block Optimizationsp

• Common Sub- • Copy Propagation Common Sub 
Expression Elimination 
– a=(x+y)+z; b=x+y; 

Copy Propagation 
– a=x+y; b=a; c=b+z; 
– a=x+y; b=a; c=a+z; (  y)  y  

– t=x+y;  a=t+z; b=t; 

Constant P opagation • Dead Code Elimination • Constant Propagation 
– x=5; b=x+y;  
– x=5; b=5+y; 

• Dead Code Elimination 
– a=x+y; b=a; b=a+z; 
– a=x+y;  b=a+z ;  y;  

• Algebraic Identities • Strength Reduction 
t i*4  

Saman Amarasinghe 22 6.035 ©MIT Fall 1998 

– a=x*1; 
– a=x;  

– t=i*4; 
– t=i<<2; 



Basic Block Analysis Approachy  pp  
• Assume normalized basic block - all statements 

are of the form 
– var = var op var (where op is a binary operator) 
– var = op var (where op is a unary operator) 
– var = var 

• Simulate a symbolic execution of basic block 
– Reason about values of variables (or other 

aspects of computation) 
– Derive property of interest 
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Two Kinds of Variables 

• Temporaries Introduced By Compilerp y p 
– Transfer values only within basic block 
– Introduced as part of instruction flatteningp g 
– Introduced by optimizations/transformations 
– Typically assigned to only onceTypically assigned to only once 

• Program Variables 
Declared in original program– Declared in original program 

– May be assigned to multiple times 
M  t  f  l  b  t  b  i  bl  k  
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– May transfer values between basic blocks 
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Simulate execution of basic block

Value Numbering 
•	 Reason about values of variables and expressions 

in the program 
–	 Simulate execution of basic block 
– Assign virtual value to each variable and expression


•	 Discovered property: which variables and expressions Discovered property: which variables and expressions 
have the same value 

•	 SStanddardd use: 
– Common subexpression elimination 
–	 Typically combined with transformation thatTypically combined with transformation that 

• Saves computed values in temporaries 
• Replaces expressions with temporaries when value 

off expressiion previiouslly computtedd 
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b  v5

Original Basic 
New Basic 

Block 

a = x+y 
b = a+z 

a = x+y 
t1 = a 
b =  a+z  

Block 

b a z  
b = b+y 
c = a+z 

b = a+z 
t2 = b 
b = b+y 
t3 bt3 = b 

x v1 

Var to Val c = t2 

x  v1 
y  v2 
a  v3 

4 v1+v2  v3 

Exp to Val 
v1+v2  t1 

Exp to Tmp 

b  v6 
z  v4 

c  v5 

v1+v2  v3 
v3+v4  v5 

v1+v2  t1 
v3+v4  t2 

v5+v2  v6 v5+v2  t6 
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Value Numbering Summaryg y 

• Forward symbolic execution of basic block 

–

• Each new value assigned to temporary 
– a=x+y; becomes a=x+y; t=a; 

Temporary preserves value for use later in program even Temporary preserves value for use later in program even 
if original variable rewritten 
• a=x+y;  a=a+z; b=x+y becomes 
• a=x+y; t=a; a=a+z; b=t; 

• Maps 
– V tVar to VVall – specifiifies symbbolilic vallue ffor eachh var iiable
bl 
– Exp to Val – specifies value of each evaluated expression 
– Exp to Tmp – specifies tmp that holds value of each Exp to Tmp specifies tmp that holds value of each 

evaluated expression 
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•

Map Usagep g 
• Var to Val  

– Used to compute symbolic value of y and z when 
f fprocessing statement of form x = y + z 

• Exp to Tmpp p 
– Used to determine which tmp to use if value(y) + 

value(z) previously computed when processing 
statement of form x = y + zstatement of form x y + z 

• Exp to Val  
d d l h– Used to update Var to Val when 

• processing statement of the form x = y + z, and 
• value(y) + value(z) previously computed 
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value(y) + value(z) previously computed 



      

Interesting Propertiesg p 

• Finds common subexpressions even if they use 
diff t i bl i idifferent variables in expressions 
– y=a+b;  x=b; z=a+x becomes 

y  a+b; t  y;  x  b; z  t– y=a+b; t=y; x=b; z=t 
– Why? Because computes with symbolic values 

• Finds common subexpressions even if variable • Finds common subexpressions even if variable 
that originally held the value was overwritten 
– y=a+b; y=1; z=a+b becomesy a+b;  y 1;  z a+b  becomes 
– y=a+b; t=y; y=1; z=t 
– Why? Because saves values away in 

Saman Amarasinghe 30 6.035 ©MIT Fall 1998 

y y 
temporaries 



            

        

One More Interesting Propertyg p y 

•	 Flattening and CSE combine to capture partial and 
arbitrarily complex common subexpressions 

w=(a+b)+c; 

x=b; 

y=(a+x)+c; z=a+b; 

– After flattening: 
a+b; w t1+c; 	 a+x; y t2+c;  z=a+b;t1t1=a+b; w=t1+c; xx b;  =b; t2t2=a+x; y=t2+c; z a+b; 

– CSE algorithm notices that 
• t11+c andd t 22+c compute same vallue 
• In the statement z = a+b, a+b has already been computed so 

generated code can reuse the result 

t1=a+b; w=t1+c; t3=w; x=b; t2=t1;  y=t3; z=t1; 
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Problems I 

• Algorithm has a temporary for each new value 
– a=x+y; t1=a; 

• Introduces  
– lots of temporaries 
– lots of copy statements to temporaries 

• In many cases, temporaries and copy statements 
are unnecessary 
S li i t th ith ti d• So we eliminate them with copy propagation and 
dead code elimination 
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Problems II 

• Expressions have to be identical 
– a=x+y+z; b=y+z+x;  c=x*2+y+2*z–(x+z) 

• We use canonicalization    
• We use algebraic simplification 
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Copy Propagationpy p g 

•	 Once again, simulate execution of program 
•	 If can, use original variable instead of temporary


– a=x+y; b=x+y; 
– After CSE becomes a=x+y; t=a; b=t; 
– After CP becomes   	a=x+y; t=a; b=a;


Aft DCE b b=a;
–	 After DCE becomes a=x+y; b 

•	 Key idea: 
d t i h i i l i bl i NOT itt– determine when original variable is NOT overwritten 
between its assignment statement and the use of the 
computed value 

– If not overwritten, use original variable 
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Copy Propagation Mapspy p g p 

• Maintain two mapsp
– tmp to var: tells which variable to use instead 

of a given temporary variable 
– var to set: inverse of tmp to var. tells which 

temps are mapped to a given variable by tmp 
to var 
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Copy Propagation Examplepy p g p 
• Original  

• After CSE and Copy a = x+ya x+y


b = a+z Propagation


c = x+y a = x+y


a = b t1 = a


• After CSE  b = a+z 
t2 = b t2 = b 

a = x+y 
c = a

t1 = a 
a = bb

b = a+z 
a


t2 = b


c  t1 
c = t1


a = b
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Aft CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 

tmp to var tmp to var var to set var to set 
t1  a a {t1} 
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Af CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 
b = a+z b = a+z 
t2 = b t2 = b 

tmp to var tmp to var var to set var to set 
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b 
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Aft CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 
b = a+z b = a+z 
t2 = b t2 = b 
c = t1 

tmp to var tmp to var var to set var to set 
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b 
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Aft CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 
b = a+z b = a+z 
t2 = b t2 = b 
c = t1 c = a 

tmp to var tmp to var var to set var to set 
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b 
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Aft CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 
b = a+z b = a+z 
t2 = b t2 = b 
c = t1 c = a 
a = b a = b 

tmp to var tmp to var var to set var to set 
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b 
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Copy Propagation Examplepy p g p 

Basic Block Basic Block After 
Aft CSE CSECSE and C d Copy PProp After CSE 

a = x+y a = x+y

t1t1 = a t1
t1 = a 
b = a+z b = a+z 
t2 = b t2 = b 
c = t1 c = a 
a = b a = b 

tmp to var tmp to var var to set var to set 
t1  t1 a {}

t2  b bb {{t2}t2}
t2  b 
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=

Dead Code Elimination 

• Copy propagation keeps all temps aroundpy p p g p p 
• May be temps that are never read 
• Dead Code Elimination removes themDead Code Elimination removes them 

Basic Block After 
CSE and CP 

Basic Block After 
CSE CP and DCE 

a = x+y 
t1 = a 

a = x+y 
b =  a+z  

CSE and CP CSE, CP and DCE 

t1 a 
b = a+z 
t2 = b 
c = a  

b a+z 
c = a 
a = b 
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c = a 
a = b 



a a a o a ab a a d d

Dead Code Elimination 

• Basic Idea 
– Process Code In Reverse Execution Order 
– Maintain a set of variables that are needed 

later in computation 
– If encounter an assignment to a temporaryg p y 

that is not needed, remove assignment 
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 
t2 = b 
c = a 
a = b 

Needed Set 
{b}{ }  
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 
t2 = b 
c = a 
a = b 

Needed Set 
{a, b}{ ,  }  
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 
t2 = b 
c = a 
a = b 

Needed Set 
{a, b}{ ,  }  
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 

c = a 
a = b 

Needed Set 
{a, b}{ ,  }  
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 

c = a 
a = b 

Needed Set 
{a, b, z}{ ,  ,  }  
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Basic Block After 

a = x+y 
t1 

CSE and Copy Prop 

t1 = a 
b = a+z 

c = a 
a = b 

Needed Set 
{a, b, z}{ ,  ,  }  
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Basic Block After 

a = x+y 

CSE and Copy Prop 

b = a+z 

c = a 
a = b 

Needed Set 
{a, b, z}{ ,  ,  }  
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Basic Block After , CSE Copy Propagation, 

a = x+y 

and Dead Code Elimination 

b = a+z 

c = a 
a = b 

Needed Set 
{a, b, z}{ ,  ,  }  
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Basic Block After , CSE Copy Propagation, 
and Dead Code Elimination


a = x+y 

b = a+z 

c = a 
a = b


Needed Set

{a, b, z}} 
{ ,  ,  
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,

Algebraic Simplificationg p 

• Applyy  our knowledge from alggebra, number
pp g

theory etc. to simplify expressions
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,

Algebraic Simplificationg p 

• Apply our knowledge from algebra, numberpp y g g 
theory etc. to simplify expressions 

• ExampleExample 
– a + 0   a 
– a * 1  a 
– a / 1   a 
– a * 0  0 

0– 0 - a   -a 
– a + (-b)  a - b 
– -(-a)  a 
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( a)  a 



,

Algebraic Simplificationg p 

• Applyy  our knowledge from alggebra, number
pp g

theory etc. to simplify expressions


• ExampleExample

– a   true  a

– a   false  false

– a   true  true

– a   false  a
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,

Algebraic Simplificationg p 

• Applyy  our knowledge from alggebra, number
pp g

theory etc. to simplify expressions


• ExampleExample

– a ^ 2   a*a

– a * 2  a + a 
– a * 8  a << 3 
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•

Opportunities for 
Algebraic Simplification

• After compiler expansion 

Programs are more readable with full expressions
– Programmers are lazy to simplify expressions 

In the code

Algebraic Simplification


• In the code

– Programs  are more readable with full  expressions

– Example: Array read A[8][12] will get expanded to


– *(Abase + 4*(12 + 8*256)) which can be simplified


• After other optimizations 
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Usefulness of Algebraic Simplificationg p 

R d  th  b  f i  t ti  • Reduces the number of instructions 
• Uses less expensive instructions 
• Enable other optimizations 
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•

Implementationp

• Not a data-flow optimization!p
• Find candidates that matches the 

simplification rules and simplify thesimplification rules and simplify the 
expression trees 

• Candidates may not be obviousCandidates may not be obvious 
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•

Implementationp

• Not a data-flow optimization!p
• Find candidates that matches the 

simplification rules and simplify thesimplification rules and simplify the 
expression trees 

• Candidates may not be obviousCandidates may not be obvious 
– Example  

a + b  - a 
+ 

a + b a 
a -
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•

Use knowledge about operatorsg p 

• Commutative operatorsCommutative operators 
– a op b = b op a

–


• Associative operators 
– ((a opp b)) opp c = b opp ((a opp c)) 
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Canonical Format 

• Put expression trees into a canonical p
format 
– Sum of multiplicandsp
– Variables/terms in a canonical order 
– ExampleExample 

(a+3)*(a+8)*4  4*a*a+44*a+96 

– Section 12.3.1 of whale book talks about this 
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Effects on the Numerical Stabilityy 

• Some alggebraic simpplifications mayy  p  produce 
incorrect results 
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Effects on the Numerical Stabilityy 

• Some alggebraic simpplifications mayy  p  produce 
incorrect results 

• ExampleExample 
– (a / b)*0 + c 
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Effects on the Numerical Stabilityy 

• Some alggebraic simpplifications mayy  p  produce 
incorrect results 

• ExampleExample 
– (a / b)*0 + c 
– we can simplify this to we can simplify this to cc 
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Effects on the Numerical Stabilityy 

• Some alggebraic simpplifications mayy  p  produce 
incorrect results 

• ExampleExample 
– (a / b)*0 + c 
– we can simplify this to we can simplify this to cc 
– But what about when b = 0 

should be a exception, but we’ll get a result! should be a exception, but we ll get a result! 
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Outline 

• IntroductionIntroduction 

• Basic Blocks 

• Common Subexpression Elimination 

C  P  ti  • Copy Propagation 

• Dead Code Elimination 

• Algebraic Simplification 

• Summary 



Interesting Propertiesg p 

• Analysis and Transformation Algorithms 

S b li ll Si l t E ti f P
Symbolically Simulate Execution of Program 
– CSE and Copy Propagation go forward 
– Dead Code Elimination goes backwardsDead Code Elimination goes backwards 

• Transformations stacked 
– Group of basic transformations work together 
– Often, one transformation creates inefficient code that 

is cleaned up by following transformationsis cleaned up by following transformations 
– Transformations can be useful even if original code 

may not benefit from transformation 
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Other Basic Block Transformations 

• Constant Propagationp g
• Strength Reduction 

– a<<2 = a*4; a+a+a = 3*a;a<<2 a 4;  a+a+a 3 a;  

• Do these in unified transformation 
framework not in earlier or later phases framework, not in earlier or later phases 
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Summaryy 

•	 Basic block analyses and transformations 
•	 SSymbbolilicalllly siimullate executiion off program 

–	 Forward (CSE, copy prop, constant prop) 
–	 Backward (Dead code elimination) 

•	 Stacked groups of analyses and transformations that work 
together 
–	 CSE introduces excess tempporaries and copypy  statements 
–	 Copy propagation often eliminates need to keep temporary 

variables around 
–	 Dead code elimination removes useless code 

•	 Similar in spirit to many analyses and transformations that 
operate across basic blocks 
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