
Spring 2009Spring 2009

Lecture 9: Introduction toLecture 9: Introduction to
Program Analysis and

OptimizationOptimization

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

Program Analysisg y

• Compile-time reasoning about run-time behavior
of program
– Can discover things that are always true:

“ i l 1 i th t t t ”• “x is always 1 in the statement y = x + z”
• “the pointer p always points into array a”
• “the statement return 5 can never execute”

– Can infer things that are likely to be true:
• “the reference r usually refers to an object of class C”
• “the statement a = b + c appears to execute more frequently • the statement a = b + c appears to execute more frequently

than the statement x = y + z”

– Distinction between data and control-flow properties

Saman Amarasinghe 3 6.035 ©MIT Fall 1998

•

Transformations

• Use analysis results to transform program
• Overall goal: improve some aspect of program
• Traditional goals:

R d b f d i i– Reduce number of executed instructions
– Reduce overall code size

• Other goals emerge as space becomes more complexOther goals emerge as space becomes more complex
– Reduce number of cycles

• Use vector or DSP instructions
• Improve instruction or data cache hit rate

– Reduce power consumption
– Reduce memory usage

Saman Amarasinghe 4 6.035 ©MIT Fall 1998

Reduce memory usage

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

a o a u o u o

Control Flow Graphp

• Nodes Represent Computationp p
– Each Node is a Basic Block
– Basic Block is a Sequence of Instructions withq

• No Branches Out Of Middle of Basic Block
• No Branches Into Middle of Basic Block
• Basic Blocks should be maximal

– Execution of basic block starts with first
instruction

– Includes all instructions in basic block

Saman Amarasinghe 6 6.035 ©MIT Fall 1998

• Edges Represent Control Flow

=

Control Flow Graph s = 0; p

into add(n, k) {

a = 4;
i = 0;

k 0 s = 0; a = 4; i = 0;
if (k == 0)

b 1

k == 0

b = 1;
else

b = 2;

b = 1;b = 2;

b 2;
while (i < n) {

s = s + a*b;

i < n

+ *b
;

i = i + 1;
}

s = s + a*b;
i = i + 1;

return s;

Saman Amarasinghe 7 6.035 ©MIT Fall 1998

return s;
}

•

Basic Block Construction

• Start with instruction control-flow graphg p
• Visit all edges in graph
• Merge adjacent nodes ifMerge adjacent nodes if

– Only one edge from first node
Only one edge into second node– Only one edge into second node

s = 0;

a = 4;

s = 0;
a = 4;

Saman Amarasinghe 8 6.035 ©MIT Fall 1998

s = 0; s = 0;

a = 4;

a = 4;

i = 0;

k == 0k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

Saman Amarasinghe 9 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;

a = 4; a = 4;
i = 0;

i = 0;

k == 0k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

Saman Amarasinghe 10 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;

a = 4;
a = 4;
i = 0;

k == 0i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

Saman Amarasinghe 11 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n

s = s + a*b;

i = i + 1;

return s;

Saman Amarasinghe 12 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;

Saman Amarasinghe 13 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

Saman Amarasinghe 14 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;
return s;

s = s + a*b;
i = i + 1;

Saman Amarasinghe 15 6.035 ©MIT Fall 2006

i = i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1;

Saman Amarasinghe 16 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;

Saman Amarasinghe 17 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;

Saman Amarasinghe 18 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;

Saman Amarasinghe 19 6.035 ©MIT Fall 2006

i i + 1;

s = 0; s = 0;s = 0;

a = 4;

a = 4;
i = 0;

k == 0
i = 0;

k == 0

k == 0

k == 0

b = 1;b = 2; b = 1;b = 2;

i < n i < n

s = s + a*b;

i = i + 1;

return s;
s = s + a*b;

i = i + 1; return s;

Saman Amarasinghe 20 6.035 ©MIT Fall 2006

i i + 1;

t t t t

Program Points, Split and Join
PointsPoints

•	 One program point before and after each
statement in program

•	 Split point has multiple successors – conditional
branch statements only split points

•	 Merge point has multiple predecessors
•	 Each basic block

– Either starts with a merge point or its

predecessor ends with a split point

– Either ends with a split point or its successor
i h istarts with a merge point

Saman Amarasinghe 21	 6.035 ©MIT Fall 1998

• - •

Basic Block Optimizationsp

• Common Sub- • Copy Propagation Common Sub
Expression Elimination
– a=(x+y)+z; b=x+y;

Copy Propagation
– a=x+y; b=a; c=b+z;
– a=x+y; b=a; c=a+z; (y) y

– t=x+y; a=t+z; b=t;

Constant P opagation • Dead Code Elimination • Constant Propagation
– x=5; b=x+y;
– x=5; b=5+y;

• Dead Code Elimination
– a=x+y; b=a; b=a+z;
– a=x+y; b=a+z ; y;

• Algebraic Identities • Strength Reduction
t i*4

Saman Amarasinghe 22 6.035 ©MIT Fall 1998

– a=x*1;
– a=x;

– t=i*4;
– t=i<<2;

Basic Block Analysis Approachy pp
• Assume normalized basic block - all statements

are of the form
– var = var op var (where op is a binary operator)
– var = op var (where op is a unary operator)
– var = var

• Simulate a symbolic execution of basic block
– Reason about values of variables (or other

aspects of computation)
– Derive property of interest

Saman Amarasinghe 23 6.035 ©MIT Fall 1998

odu d a a o u o a

Two Kinds of Variables

• Temporaries Introduced By Compilerp y p
– Transfer values only within basic block
– Introduced as part of instruction flatteningp g
– Introduced by optimizations/transformations
– Typically assigned to only onceTypically assigned to only once

• Program Variables
Declared in original program– Declared in original program

– May be assigned to multiple times
M t f l b t b i bl k

Saman Amarasinghe 24 6.035 ©MIT Fall 1998

– May transfer values between basic blocks

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

Simulate execution of basic block

Value Numbering
•	 Reason about values of variables and expressions

in the program
–	 Simulate execution of basic block
– Assign virtual value to each variable and expression

•	 Discovered property: which variables and expressions Discovered property: which variables and expressions
have the same value

•	 SStanddardd use:
– Common subexpression elimination
–	 Typically combined with transformation thatTypically combined with transformation that

• Saves computed values in temporaries
• Replaces expressions with temporaries when value

off expressiion previiouslly computtedd

Saman Amarasinghe 26	 6.035 ©MIT Fall 1998

b  v5

Original Basic
New Basic

Block

a = x+y
b = a+z

a = x+y
t1 = a
b = a+z

Block

b a z
b = b+y
c = a+z

b = a+z
t2 = b
b = b+y
t3 bt3 = b

x v1

Var to Val c = t2

x  v1
y  v2
a  v3

4 v1+v2  v3

Exp to Val
v1+v2  t1

Exp to Tmp

b  v6
z  v4

c  v5

v1+v2  v3
v3+v4  v5

v1+v2  t1
v3+v4  t2

v5+v2  v6 v5+v2  t6

Saman Amarasinghe 27 6.035 ©MIT Fall 1998

Value Numbering Summaryg y

• Forward symbolic execution of basic block

–

• Each new value assigned to temporary
– a=x+y; becomes a=x+y; t=a;

Temporary preserves value for use later in program even Temporary preserves value for use later in program even
if original variable rewritten
• a=x+y; a=a+z; b=x+y becomes
• a=x+y; t=a; a=a+z; b=t;

• Maps
– V tVar to VVall – specifiifies symbbolilic vallue ffor eachh var iiable
bl
– Exp to Val – specifies value of each evaluated expression
– Exp to Tmp – specifies tmp that holds value of each Exp to Tmp specifies tmp that holds value of each

evaluated expression

Saman Amarasinghe 28 6.035 ©MIT Fall 1998

=

•

Map Usagep g
• Var to Val

– Used to compute symbolic value of y and z when
f fprocessing statement of form x = y + z

• Exp to Tmpp p
– Used to determine which tmp to use if value(y) +

value(z) previously computed when processing
statement of form x = y + zstatement of form x y + z

• Exp to Val
d d l h– Used to update Var to Val when

• processing statement of the form x = y + z, and
• value(y) + value(z) previously computed

Saman Amarasinghe 29 6.035 ©MIT Fall 1998

value(y) + value(z) previously computed

Interesting Propertiesg p

• Finds common subexpressions even if they use
diff t i bl i idifferent variables in expressions
– y=a+b; x=b; z=a+x becomes

y a+b; t y; x b; z t– y=a+b; t=y; x=b; z=t
– Why? Because computes with symbolic values

• Finds common subexpressions even if variable • Finds common subexpressions even if variable
that originally held the value was overwritten
– y=a+b; y=1; z=a+b becomesy a+b; y 1; z a+b becomes
– y=a+b; t=y; y=1; z=t
– Why? Because saves values away in

Saman Amarasinghe 30 6.035 ©MIT Fall 1998

y y
temporaries

One More Interesting Propertyg p y

•	 Flattening and CSE combine to capture partial and
arbitrarily complex common subexpressions

w=(a+b)+c;

x=b;

y=(a+x)+c; z=a+b;

– After flattening:
a+b; w t1+c; 	 a+x; y t2+c; z=a+b;t1t1=a+b; w=t1+c; xx b; =b; t2t2=a+x; y=t2+c; z a+b;

– CSE algorithm notices that
• t11+c andd t 22+c compute same vallue
• In the statement z = a+b, a+b has already been computed so

generated code can reuse the result

t1=a+b; w=t1+c; t3=w; x=b; t2=t1; y=t3; z=t1;

Saman Amarasinghe 31	 6.035 ©MIT Fall 1998

Problems I

• Algorithm has a temporary for each new value
– a=x+y; t1=a;

• Introduces
– lots of temporaries
– lots of copy statements to temporaries

• In many cases, temporaries and copy statements
are unnecessary
S li i t th ith ti d• So we eliminate them with copy propagation and
dead code elimination

Saman Amarasinghe 32 6.035 ©MIT Fall 1998

Problems II

• Expressions have to be identical
– a=x+y+z; b=y+z+x; c=x*2+y+2*z–(x+z)

• We use canonicalization
• We use algebraic simplification

Saman Amarasinghe 33 6.035 ©MIT Fall 1998

Copy Propagationpy p g

•	 Once again, simulate execution of program
•	 If can, use original variable instead of temporary

– a=x+y; b=x+y;
– After CSE becomes a=x+y; t=a; b=t;
– After CP becomes 	a=x+y; t=a; b=a;

Aft DCE b b=a;
–	 After DCE becomes a=x+y; b

•	 Key idea:
d t i h i i l i bl i NOT itt– determine when original variable is NOT overwritten
between its assignment statement and the use of the
computed value

– If not overwritten, use original variable

Saman Amarasinghe 34	 6.035 ©MIT Fall 1998

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

Copy Propagation Mapspy p g p

• Maintain two mapsp
– tmp to var: tells which variable to use instead

of a given temporary variable
– var to set: inverse of tmp to var. tells which

temps are mapped to a given variable by tmp
to var

Saman Amarasinghe 36 6.035 ©MIT Fall 1998

Copy Propagation Examplepy p g p
• Original

• After CSE and Copy a = x+ya x+y

b = a+z Propagation

c = x+y a = x+y

a = b t1 = a

• After CSE b = a+z
t2 = b t2 = b

a = x+y
c = a

t1 = a
a = bb

b = a+z
a

t2 = b

c t1
c = t1

a = b

Saman Amarasinghe 37 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Aft CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a

tmp to var tmp to var var to set var to set
t1  a a {t1}

Saman Amarasinghe 38 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Af CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a
b = a+z b = a+z
t2 = b t2 = b

tmp to var tmp to var var to set var to set
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b

Saman Amarasinghe 39 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Aft CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a
b = a+z b = a+z
t2 = b t2 = b
c = t1

tmp to var tmp to var var to set var to set
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b

Saman Amarasinghe 40 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Aft CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a
b = a+z b = a+z
t2 = b t2 = b
c = t1 c = a

tmp to var tmp to var var to set var to set
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b

Saman Amarasinghe 41 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Aft CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a
b = a+z b = a+z
t2 = b t2 = b
c = t1 c = a
a = b a = b

tmp to var tmp to var var to set var to set
t1  a a {t1}

t2  b bb {{t2}t2}
t2  b

Saman Amarasinghe 42 6.035 ©MIT Fall 2006

Copy Propagation Examplepy p g p

Basic Block Basic Block After
Aft CSE CSECSE and C d Copy PProp After CSE

a = x+y a = x+y

t1t1 = a t1
t1 = a
b = a+z b = a+z
t2 = b t2 = b
c = t1 c = a
a = b a = b

tmp to var tmp to var var to set var to set
t1  t1 a {}

t2  b bb {{t2}t2}
t2  b

Saman Amarasinghe 43 6.035 ©MIT Fall 2006

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

•

=

Dead Code Elimination

• Copy propagation keeps all temps aroundpy p p g p p
• May be temps that are never read
• Dead Code Elimination removes themDead Code Elimination removes them

Basic Block After
CSE and CP

Basic Block After
CSE CP and DCE

a = x+y
t1 = a

a = x+y
b = a+z

CSE and CP CSE, CP and DCE

t1 a
b = a+z
t2 = b
c = a

b a+z
c = a
a = b

Saman Amarasinghe 45 6.035 ©MIT Fall 1998

c = a
a = b

a a a o a ab a a d d

Dead Code Elimination

• Basic Idea
– Process Code In Reverse Execution Order
– Maintain a set of variables that are needed

later in computation
– If encounter an assignment to a temporaryg p y

that is not needed, remove assignment

Saman Amarasinghe 46 6.035 ©MIT Fall 1998

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{b}{ }

Saman Amarasinghe 47 6.035 ©MIT Fall 2006

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{a, b}{ , }

Saman Amarasinghe 48 6.035 ©MIT Fall 2006

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z
t2 = b
c = a
a = b

Needed Set
{a, b}{ , }

Saman Amarasinghe 49 6.035 ©MIT Fall 2006

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b}{ , }

Saman Amarasinghe 50 6.035 ©MIT Fall 2006

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b, z}{ , , }

Saman Amarasinghe 51 6.035 ©MIT Fall 2006

Basic Block After

a = x+y
t1

CSE and Copy Prop

t1 = a
b = a+z

c = a
a = b

Needed Set
{a, b, z}{ , , }

Saman Amarasinghe 52 6.035 ©MIT Fall 2006

Basic Block After

a = x+y

CSE and Copy Prop

b = a+z

c = a
a = b

Needed Set
{a, b, z}{ , , }

Saman Amarasinghe 53 6.035 ©MIT Fall 2006

Basic Block After , CSE Copy Propagation,

a = x+y

and Dead Code Elimination

b = a+z

c = a
a = b

Needed Set
{a, b, z}{ , , }

Saman Amarasinghe 54 6.035 ©MIT Fall 2006

Basic Block After , CSE Copy Propagation,
and Dead Code Elimination

a = x+y

b = a+z

c = a
a = b

Needed Set

{a, b, z}}
{ , ,

Saman Amarasinghe 55 6.035 ©MIT Fall 2006

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

,

Algebraic Simplificationg p

• Applyy our knowledge from alggebra, number
pp g

theory etc. to simplify expressions

Saman Amarasinghe 57 6.035 ©MIT Fall 1998

,

Algebraic Simplificationg p

• Apply our knowledge from algebra, numberpp y g g
theory etc. to simplify expressions

• ExampleExample
– a + 0  a
– a * 1  a
– a / 1  a
– a * 0  0

0– 0 - a  -a
– a + (-b)  a - b
– -(-a)  a

Saman Amarasinghe 58 6.035 ©MIT Fall 1998

(a)  a

,

Algebraic Simplificationg p

• Applyy our knowledge from alggebra, number
pp g

theory etc. to simplify expressions

• ExampleExample

– a  true  a

– a  false  false

– a  true  true

– a  false  a

Saman Amarasinghe 59 6.035 ©MIT Fall 1998

,

Algebraic Simplificationg p

• Applyy our knowledge from alggebra, number
pp g

theory etc. to simplify expressions

• ExampleExample

– a ^ 2  a*a

– a * 2  a + a
– a * 8  a << 3

Saman Amarasinghe 60 6.035 ©MIT Fall 1998

•

Opportunities for
Algebraic Simplification

• After compiler expansion

Programs are more readable with full expressions
– Programmers are lazy to simplify expressions

In the code

Algebraic Simplification

• In the code

– Programs are more readable with full expressions

– Example: Array read A[8][12] will get expanded to

– *(Abase + 4*(12 + 8*256)) which can be simplified

• After other optimizations

Saman Amarasinghe 61 6.035 ©MIT Fall 1998

Usefulness of Algebraic Simplificationg p

R d th b f i t ti • Reduces the number of instructions
• Uses less expensive instructions
• Enable other optimizations

Saman Amarasinghe 62 6.035 ©MIT Fall 1998

•

Implementationp

• Not a data-flow optimization!p
• Find candidates that matches the

simplification rules and simplify thesimplification rules and simplify the
expression trees

• Candidates may not be obviousCandidates may not be obvious

Saman Amarasinghe 63 6.035 ©MIT Fall 1998

•

Implementationp

• Not a data-flow optimization!p
• Find candidates that matches the

simplification rules and simplify thesimplification rules and simplify the
expression trees

• Candidates may not be obviousCandidates may not be obvious
– Example

a + b - a
+

a + b a
a -

Saman Amarasinghe 64 6.035 ©MIT Fall 1998

b a

•

Use knowledge about operatorsg p

• Commutative operatorsCommutative operators
– a op b = b op a

–

• Associative operators
– ((a opp b)) opp c = b opp ((a opp c))

Saman Amarasinghe 65 6.035 ©MIT Fall 1998

Canonical Format

• Put expression trees into a canonical p
format
– Sum of multiplicandsp
– Variables/terms in a canonical order
– ExampleExample

(a+3)*(a+8)*4  4*a*a+44*a+96

– Section 12.3.1 of whale book talks about this

Saman Amarasinghe 66 6.035 ©MIT Fall 1998

Effects on the Numerical Stabilityy

• Some alggebraic simpplifications mayy p produce
incorrect results

Saman Amarasinghe 67 6.035 ©MIT Fall 1998

Effects on the Numerical Stabilityy

• Some alggebraic simpplifications mayy p produce
incorrect results

• ExampleExample
– (a / b)*0 + c

Saman Amarasinghe 68 6.035 ©MIT Fall 1998

Effects on the Numerical Stabilityy

• Some alggebraic simpplifications mayy p produce
incorrect results

• ExampleExample
– (a / b)*0 + c
– we can simplify this to we can simplify this to cc

Saman Amarasinghe 69 6.035 ©MIT Fall 1998

Effects on the Numerical Stabilityy

• Some alggebraic simpplifications mayy p produce
incorrect results

• ExampleExample
– (a / b)*0 + c
– we can simplify this to we can simplify this to cc
– But what about when b = 0

should be a exception, but we’ll get a result! should be a exception, but we ll get a result!

Saman Amarasinghe 70 6.035 ©MIT Fall 1998

ead Code at o

Outline

• IntroductionIntroduction

• Basic Blocks

• Common Subexpression Elimination

C P ti • Copy Propagation

• Dead Code Elimination

• Algebraic Simplification

• Summary

Interesting Propertiesg p

• Analysis and Transformation Algorithms

S b li ll Si l t E ti f P
Symbolically Simulate Execution of Program
– CSE and Copy Propagation go forward
– Dead Code Elimination goes backwardsDead Code Elimination goes backwards

• Transformations stacked
– Group of basic transformations work together
– Often, one transformation creates inefficient code that

is cleaned up by following transformationsis cleaned up by following transformations
– Transformations can be useful even if original code

may not benefit from transformation

Saman Amarasinghe 72 6.035 ©MIT Fall 1998

= =

Other Basic Block Transformations

• Constant Propagationp g
• Strength Reduction

– a<<2 = a*4; a+a+a = 3*a;a<<2 a 4; a+a+a 3 a;

• Do these in unified transformation
framework not in earlier or later phases framework, not in earlier or later phases

Saman Amarasinghe 73 6.035 ©MIT Fall 1998

t t

Summaryy

•	 Basic block analyses and transformations
•	 SSymbbolilicalllly siimullate executiion off program

–	 Forward (CSE, copy prop, constant prop)
–	 Backward (Dead code elimination)

•	 Stacked groups of analyses and transformations that work
together
–	 CSE introduces excess tempporaries and copypy statements
–	 Copy propagation often eliminates need to keep temporary

variables around
–	 Dead code elimination removes useless code

•	 Similar in spirit to many analyses and transformations that
operate across basic blocks

Saman Amarasinghe 74	 6.035 ©MIT Fall 1998

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

