Unoptimized Code Generation



o [ast time we left off on the procedure
abstraction ...




The Stack

Arguments 0 to 6
are In:

— O%rdi, %rsi, %rdx,
%0rcx, %r8 and %r9

%rbp

— marks the beginning
of the current frame

%rsp
— marks the end

8*n+16 (%rbp)

16 (%rbp)
8(%rbp)

O0(%rbp)
-8 (%rbp)

-8*m-8(%rbp)
O0(%rsp)

argument n

argument 7

Return address

Previous %rbp

local O

local m

Variable size




Question:

* \Why use a stack? Why not use the heap or pre-
allocated in the data segment?




Procedure Linkages

Pre-call:

Standard procedure linkage

procedure p *Push arguments

«Save caller-saved registers

Prolog:
prolog procedure g <

*Push old frame pointer

prolog Save calle-saved registers

\ 4

pre-call

Make room for temporaries

Epilog:

post-return *Restore callee-saved

*Pop old frame pointer

*Store return value

A 4

epilog Post-return:

Restore caller-saved

*Pop arguments




return address

St k previous frame pointer
aC calliee saved

registers

» Calling: Caller

— Assume %rcx is live and local variables
Is caller save

— Call foo(A,B,C,D,E,F,G,H, )

« Ato | are at -8(%rbp) to -72(%rbp) dynamic area

stack temporaries

caller saved registers
ST hrex argument 9
push -72(%rbp) argument 8
push -64(%rbp) argument 7
push ~56(%rbp) return address
mov -48(%rbp), %ro

mov -40(%rbp), %r8

mov -32(%rbp), %rcx

mov -24(%rbp), %rdx

mov -16(%rbp), %rsi

mov -8(%rbp), %rdi

call foo




Stack
Calling: Calliee

— Assume %rbx is used in the function
and is calliee save

— Assume 40 bytes are required for locals

foo:

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area

caller saved registers

argument 9
argument 8
argument 7

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area




return address
S k previous frame pointer
taC calliee saved
e Arguments registers

« Callfoo(A,B,C,D,E,F,G,H,I
— Passed in by pushing before the call

local variables

push ~72(%rbp) stack temporaries

push -64(%rbp)
push -56 (%rbp) .
mov ~48(%rbp)., %ro dynamic area
mov -40(%rbp), %r8
mov -32(%rbp), %rcx

mov ~24(%rbp), %rdx caller saved registers

mov -16(%rbp), %rsi

mov -8(%rbp), %rdi argument 9

call foo argument 8
— Access A to F via registers araument 7

» or put them in local memory

return address

previous frame pointer
mov 16(%rbp), %rax calliee saved
mov 24(%rbp), %ri0 registers

CODE DATA
Control Flow | Global Static Variables |

|_Global Dynamic Data_| i
Procedures [—e—————— stack temporaries

l Temporaries |

[Parameter Passing | dynamic area

Data Access Read-only Data |

— Access rest using 16+xx(%rbp)

local variables

Statements




Stack

e Locals and Temporaries

— Calculate the size and allocate
space on the stack

sub

or enter

$48, %rsp
$48, O

— Access using -8-xx(%rbp)
-28(%rbp), %rio
%rl1l, -20(%rbp)

mov
mov

CODE

DATA

Control Flow | Global Static Variables |

| Global Dynamic Data |

Procedures | || | GANAGRES

Statements

| Parameter Passing |

Data Access |

Read-only Data |

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area

caller saved registers

argument 9
argument 8
argument 7/

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area




Stack
Returning Calliee

— Assume the return value is the first
temporary

Restore the caller saved register

Put the return value in %rax
Tear-down the call stack

-8(%rbp), %rbx
-16(%rbp), %rax
%rbp, %rsp

57 g
Ul o
188 %E

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area

caller saved registers

argument 9
argument 8
argument 7

return address

previous frame pointer

calliee saved
registers

local variables

stack temporaries

dynamic area




return address

St k previous frame pointer
aC calliee saved

registers

e Returning Caller

e (Assume the return value goes to the first

temporary) stack temporaries
— Restore the stack to reclaim the
argument space

local variables

dynamic area

caller saved registers

— Restore the caller save registers
argument 9

— Save the return value argument 8
argument /7 — ISP

foo DATA

$24, %rsp _ | Global Static Variables |

|_Global Dynamic Data_|
%rcx Control Flow [ Local Variables |
| Temporaries |

Statements
%rax, 8 ( Vi ge) p) | Parameter Passing |
Data Access [ Read-onlyData__|




Question:

e Do you need the $rbp?

* \What are the advantages and disadvantages of
having $rbp?




So far we covered..

CODE

Control Flow

Statements




Outline

Generation of expressions and statements
Generation of control flow

X86-64 Processor

Guidelines In writing a code generator




EXxpressions

o EXxpressions are represented as trees
— Expression may produce a value

— Or, It may set the condition codes (boolean exprs)

e How do you map expression trees to the machines?
— How to arrange the evaluation order?
— Where to keep the intermediate values?

e Two approaches
— Stack Model
— Flat List Model




Evaluating expression trees

e Stack model

— Eval left-sub-tree
Put the results on the stack

— Eval right-sub-tree OP

Put the results on the stack
— Get top two values from the stack
perform the operation OP

put the results on the stack
* Very inefficient!




Evaluating expression trees

e Flat List Model
— The idea is to linearize the expression tree

— Left to Right Depth-First Traversal of the expression tree

 Allocate temporaries for intermediates (all the nodes of the tree)
— New temporary for each intermediate
— All the temporaries on the stack (for now)

— Each expression is a single 3-addr op
* X=YO0pzZ
« Code generation for the 3-addr expression

— Loady into register %r10

— Load z into register %r11
— Perform op %rl0, %rill

— Store %rl1 to x




Issues In Lowering Expressions

e Map intermediates to registers?

— registers are limited

« when the tree Is large, registers may be insufficient = allocate space
In the stack

* No machine instruction is available
— May need to expand the intermediate operation into multiple
machine ops.
 Very inefficient
— too many copies

— don’t worry, we’ll take care of them in the optimization
passes

— keep the code generator very simple




What about statements?

o Assignment statements are simple
— Generate code for RHS expression
— Store the resulting value to the LHS address

- But what about conditionals and loops?




Outline

e Generation of statements
e Generation of control flow
e Guidelines In writing a code generator




Two Approaches

o Template Matching Approach
— Peephole Optimization

 Algorithmic Approach

 Both are based on structural induction
— Generate a representation for the sub-parts
— Combine them into a representation for the whole




Generation of control flow:
Template Matching Approach

e Flatten the control structure
— use a template

 Put unique labels for control join points

 Now generate the appropriate code




Template for conditionals

IT (test)
true body
else
false body

<do the test>

joper lab_true

<false body>

Jmp lab _end
lab true:

<true_body>
lab end:




Example Program

iIf(ax > bx)
dx = ax - bx;
else

dx = bx - ax;

<do test>

joper _.LO

Return address

previous frame pointer
Local variable px (10)
<EALSE BODY> Local variable py (20)

Local variable pz (30)
jmp L1 Argument 9: cx (30)
Argument 8: bx (20)

Argument 7: ax (10)
Return address

<TRUE BODY> previous frame pointer
Local variable dx (??)

Local variable dy (??)
Local variable dz (??)




Example Program

iIf(ax > bx)

dx = ax - bx;
else

dx = bx - ax;

movq 16(%rbp), %rl0
movq 24(%rbp), %ril
cmpq %rl0, %rill

i9 -LO

<FALSE BODY>

Jmp -L1

Return address
previous frame pointer

Local variable px (10)
L ocal variable py (20)
Local variable pz (30)

Argument 9: cx (30)

<TRUE BODY>

Argument 7: ax (10)

Argument 8: bx (20)

Return address

revious frame pointer

Local variable dx (??)

Local variable dy (??)

Local variable dz (??)




Example Program

iIf(ax > bx)
dx = ax - bx;
else

dx = bx - ax;

16(%rbp), %ri0
24(%rbp), %ril
%ri0, %rill

-LO Return address
24(%rbp), %rio previous frame pointer
16(%rbp), %ril Local variable px (10)
%r10. %rll Local variable py (20)

’ Local variable pz (30)
%rll, -8(%rbp)

L1 Argument 9: cx (30)

Argument 8: bx (20)

Argument 7: ax (10)
Return address

<TRUE BODY> previous frame pointer
Local variable dx (??)
Local variable dy (??)

Local variable dz (??)




Example Program

iIf(ax > bx)
dx = ax - bx;
else

dx = bx - ax;

16(%rbp), %ri0
24(%rbp), %ril
%ri0, %rill

LO Return address

24(%rbp), %rio previous frame pointer
16 (%rbp), %ril Local variable px (10)
%r10. %ril Local variable py (20)

Local variable pz (30)
%rll, -8(%rbp)
11 Argument 9: cx (30)

Argument 8: bx (20)

16 (%rbp), %rio Argument 7: ax (10)
24(%rbp), %rill Return address

%r10, %ril previous frame pointer
(; 11 08 b Local variable dx (??)
oril, -8(%rbp) Local variable dy (??)

Local variable dz (??)




Template for while loops

while (test)
body




Template for while loops

while (test)
body

lab cont:
<do the test>
joper lab body
Jmp lab_end
lab body:
<body>
Jmp lab cont
lab _end:




Template for while loops

lab cont:
while (test) <do the test>
body joper lab_body
Jjmp lab end
lab body:
<body>
Jjmp lab cont

lab _end:

e An optimized template

lab cont:
CODE DATA <do the test>

_ [Global Static Variables | joper lab_end

| Global Dynamic Data |
Procedures | Local Variables | <b0dy>

Temporaries | -
Statements | m
| Parameter Passing | Jmp

Data Access | Read-onlyData | | ab end -

lab cont




Question:

* \What Is the template for?

do
body
while (test)




Question:

* \What Is the template for?

do
body
while (test)

lab begin:
<body>
<do test>
Joper lab begin




Question:

 What 1s a drawback of the template based
approach?




Control Flow Graph (CFG)

o Starting point: high level intermediate format,
symbol tables

e Target: CFG

— CFG Nodes are Instruction Nodes
— CFG Edges Represent Flow of Control
— Forks At Conditional Jump Instructions

Merges When Flow of Control Can Reach A Point
Multiple Ways

— Entry and Exit Nodes




entry

j| XXX

/ %rmN

mov $0, a mov X, %r10 I\/Iovy %rll mov $1, a

Pattern for 1f then else




Short-Circuit Conditionals

 |In program, conditionals have a condition
written as a boolean expression
((1<n) && (V[1]1=0)) || 1> k)

e Semantics say should execute only as much as
required to determine condition
— Evaluate (v[i] '=0) only if (i <n) Is true
— Evaluate 1 > k only if ((1 <n) && (v[i] '=0)) Is

false

o Use control-flow graph to represent this short-
circuit evaluation




Short-Circuit Conditionals

while (i < n && V[i] '=0) { entry
| = i+1; |
} JI Xxx

2
cmp %r10, %rll
/N

Jyyy

!
<
cmp %r10, %rll
mov %r11, i / \

add $1, %rl11

|

mov i, %rl11

exit




More Short-Circuit Conditionals
iIf(a<b]lc!=0){

entry

| = 1+1; 1

¥ JI XXX

L

cmp %r10, %rll  Jne yyy
|
/ N\ 3
cmp %r10, %rll

mov %r11, |
VAN

add $1, %r11

|

mov I, %rl1l

==




Routines for Destructuring Program
Representation

destruct(n)

generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form

shortcircuit(c, t, f)

generates short-circuit form of conditional represented by ¢
If c Is true, control flows to t node

If ¢ Is false, control flows to f node
returns b - b is begin node for condition evaluation

new kind of node - nop node




Destructuring Seqg Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the form seq Xy




Destructuring Seqg Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the form seq Xy
(b,,e,) = destruct(x);




Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the form seq Xy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);




Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the form seq Xy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
next(e,) = by;

b,
seq ©
VAR I::> @\e .
X Y X y\q ?




Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the form seq Xy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
next(e,) = by; 4: return

Se ke
N, = @\e—»b
X Y X y\q?




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,,e,) = destruct(x);




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,.e,) = destruct(x); 2 (b,,e,) = destruct(y);




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
e = new nop;




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
e = new nop; 4: next(e,) = €; 5: next(e,) = e;




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
e = new nop; 4: next(e,) = €; 5: next(e,) = e;
b, = shortcircuit(c, by, by);

= —O .

\by*@_. ey/




Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If nis of the formifcxy
(b,.e,) = destruct(x); 2: (b,,e,) = destruct(y);
e = new nop; 4: next(e,) = €; 5: next(e,) = e;
b, = shortcircuit(c, by, by); 7 return




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X

—




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X
e = new nop;

e =

C X




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X
e = new nop; Z: (b,,e,) = destruct(x);

e =

C X




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X
e = new nop; Z: (b,,e,) = destruct(x);
b. = shortcircuit(c, b, €);
while
/N =

C X




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X
e = new nop; Z: (b,,e,) = destruct(x);
b. = shortcircuit(c, b, €); 4: next(e,) = by;
v’\//hlte ::>

C X




Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node In destructed form
If n 1s of the form while ¢ X
e = new nop; Z: (b,,e,) = destruct(x);
b. = shortcircuit(c, b, €); 4: next(e,) = b,; 5: return
v’\//hlte ::>

C X




Shortcircuiting And Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, && ¢,

c, &&c, —>




Shortcircuiting And Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, && ¢,
b, = shortcircuit(c,, t, f);

c, &&c, —>




Shortcircuiting And Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, && ¢,
b, = shortcircuit(c,, t, f); 2: b, = shortcircuit(c,, b,, f);

c, &&c, —>




Shortcircuiting And Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, && ¢,
b, = shortcircuit(c,, t, f); 2: b, = shortcircuit(c,, b,, f);
return

c, &&c, —>




Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, || ¢,

Cy Il c, |::>




Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, || ¢,
b, = shortcircuit(c,, t, f);

Cy I c |::> h
|

t

2

A

f




Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, || ¢,
b, = shortcircuit(c,, t, f); Z2: b, = shortcircuit(c,, t, b,);
b

g
Cy Il c, |::> /O\ b

l2

Q.

f




Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ is of the form ¢, || ¢,
b, = shortcircuit(c,, t, f); Z2: b, = shortcircuit(c,, t, b,);
return

|
Cy Il c, |::> /O\ b

l2

Q.

f




Shortcircuiting Not Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If ¢ Is of the form ! ¢,
b = shortcircuit(c,, f, t); return(b);

I ¢,




Computed Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
If c Is of the form e, <e,
b =new cbr(e, <e,, t, f); 2: return (b);

jl
e ::> t’/Clp\f
N

€ €,




Nops In Destructured Representation

while (i < n && V[i] '=0) { entry
| = i+1; |
} JI Xxx

2
cmp %r10, %rll
/N

Jyyy
/ i

cmp %r10, %rll
mov %rll,‘i/ / \
!

add $1, %rl11

|

mov i, %rl11




Eliminating Nops Via Peephole
Optimization

O

= \/
O

|
O




Question:

* \What are the pros and cons of template
matching vs. algorithmic approach?




Outline

Generation of statements

Generation of control flow

X86-64 Processor

Guidelines In writing a code generator




Guidelines for the code generator

* Lower the abstraction level slowly
— Do many passes, that do few things (or one thing)
o Easier to break the project down, generate and debug
Keep the abstraction level consistent

— IR should have ‘correct’ semantics at all time
At least you should know the semantics

— You may want to run some of the optimizations
between the passes.

Use assertions liberally
— Use an assertion to check your assumption




Guidelines for the code generator

e Do the simplest but dumb thing
— It 1s ok to generate 0 + 1*x + O*y
— Code Is painful to look at; let optimizations improve it

 Make sure you know want can be done at...
— Compile time in the compiler
— Runtime using generated code




Guidelines for the code generator

 Remember that optimizations will come later
— Let the optimizer do the optimizations

— Think about what optimizer will need and structure your
code accordingly

— Example: Register allocation, algebraic simplification,

constant propagation

o Setup a good testing infrastructure
— regression tests
e If a Input program creates a bug, use It as a regression test

— Learn good bug hunting procedures
o Example: binary search , delta debugging




IT OpenCourseWare
ttp://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms



