Spring 2010

Semantic Analysis

Saman Amarasinghe
Massachusetts Institute of Technology

Symbol Table Summary

Program Symbol Table (Class Descriptors)
Class Descriptors
— Field Symbol Table (Field Descriptors)
e Pointer to Field Symbol Table for SuperClass
— Method Symbol Table (Method Descriptors)
e Pointer to Method Symbol Table for Superclass
Method Descriptors
— Local Variable Symbol Table (Local Variable Descriptors)
e Parameter Symbol Table (Parameter Descriptors)
— Pointer to Field Symbol Table of Receiver Class

Local, Parameter and Field Descriptors
— Type Descriptors in Type Symbol Table or Class Descriptors

“field symbol table \
> field descriptor

class descriptor

for vector

method
descriptor
for add

type
symbol .
taple 1Nt

Int []

boolean

boolean []

vector []

symbol table _
X > parameter descriptor
this > thi '
— : this descriptor
symbol table |

paramw

S > local descriptor
local symbol table
code for add method

v

Int descriptor

v

array descripto'r>

> boolean descriptor »/ \

. vector field decl
> array descriptor T

/1N

arrey deserpor vl

Outline

e Practical Issues In Intermediate

Representation

e \What is semantic analysis?
e Type systems

 \What to check?

How to Store Statements

e Flat Lists X =a*b + ¢

— Need to represent
Intermediate values

e In a stack push a; push b; mul; push c; add; pop x

e In single use temporary tl =mula, b

registers X~ addtl, c
St X
e Trees —
: add
— _Interrr_]e.dlate values are ey
Implicit in the edges mul Id ¢
—
da Idb

Handling Control-Flow

e Control-Flow Graph l

branch <

— Pros: Simple, uniform PR

— Cons: lost the high Id i Id n
level structure l

e Structured Control
Flow Graph

— Pros: Help in loop
optimizations and
parallelization

— Cons: Many different
types of nodes

Basic Blocks

e Group statements into larger chunks
— Helps in the optimization phase

e Basic Block
— Single entry point at top
— Linear collection of statements
— No control transfer instructions in the middle
— Only last instruction can be a control transfer

Basic Blocks

Id A Id i

v

branch <

What not to do!

e Keep data in the abstract (in descriptors)
— Don'’t try to do register allocation!

 No optimizations!
— Even when they seem soo00 easy

e Theme:
— take small steps
— don’t try to do too many at once
— don’t try to do anything too early
— try not to loose any information!

Outline

e Practical Issues In Intermediate

Representation

e \What is semantic analysis?
e [ype systems

 \What to check?

Where are we?

Program (character stream)
Lexical Analyzer (Scanner)

Token Stream
Syntax Analyzer (Parser)

Parse Tree

Where are we?

Program (character stream)
Lexical Analyzer (Scanner)

Token Stream
Syntax Analyzer (Parser)

Parse Tree

Semantic Analyzer
Intermediate Code Generator

l Intermediate Representation +
Symbol Table

What iIs the semantics of a
program?

e Syntax
— How a program looks like
— Textual representation or structure
— A precise mathematical definition is possible

e Semantics
— What iIs the meaning of a program
— Harder to give a mathematical definition

Why do semantic checking?

 Make sure the program confirms to the
programming language definition

e Provide meaningful error messages to the user

- Don’t need to do additional work, will discover
In the process of intermediate representation
generation

Semantic Checking

e Static checks vs. Dynamic checks

e Static checks
— Flow-of-control checks
— Uniqueness checks
— Type checks

Flow of control checks

e Flow-control of the program is context
sensitive

e Examples:

— Declaration of a variable should be visible at use
(in scope)

— Declaration of a variable should be before use

— Each exit path returns a value of the correct type

e \What else?

Unigueness checks

e Use and misuse of identifiers
— Cannot represent in a CFG (same token)

e Examples:

— No identifier can be used for two different
definitions in the same scope

Type checks

- Most extensive semantic checks

e Examples:

— Number of arguments matches the number of formals
and the corresponding types are equivalent

— If called as an expression, should return a type

— Each access of a variable should match the declaration
(arrays, structures etc.)

— ldentifiers in an expression should be “evaluatable”
— LHS of an assignment should be “assignable”

— In an expression all the types of variables, method return
types and operators should be “compatible”

Dynamic checks

e Array bounds check
e Null pointer dereference check

Outline

e Practical Issues In Intermediate

Representation
e \What is semantic analysis?
e Type systems
 \What to check?

Type Systems

e A type system Is used to for the type
checking

e A type system incorporates
— syntactic constructs of the language
— notion of types

— rules for assigning types to language
constructs

Type expressions

e A compound type Is denoted by a type
expression

e A type expression Is

— a basic type

— application of a type constructor to other
type expressions

Type Expressions: Basic types

e Atomic types defined by the language
e Examples:
— Integers
— booleans
— floats
— characters
e type error
— special type that’ll signal an error
e voId
— basic type denoting “the absence of a value”

Type Expressions: Names

e Since type expressions maybe be named, a
type name Is a type expression

Type Expressions: Products

 If T, and T, are type expressions T, x T, IS
also a type expression

Type Expressions: Arrays

e If T Is a type expression an array(T, I) Is
also a type expression

— | Is a Iinteger constant denoting the number of
elements of type T

— Example:
int foo|[128];

array(integer, 128)

Type Expressions: Method Calls

e Mathematically a function maps
— elements of one set (the domain)
— to elements of another set (the range)

e Example
int foobar(int a, boolean b, Int c)

Integer x boolean x integer — integer

Type Expressions: Some others

e Records
— structures and classes

— Example
class { Int 1; Int j;}
Integer x integer
e Functional Languages

— functions that take functions and return
functions

— Example
(Integer — Integer) x integer — (integer — integer)

A simple typed language

e A language that has a sequence of declarations
followed by a single expression

=

D—>D;D | 1Id:T

T—>char | Integer | array[num]ofT
E—>literal | num | id | E+E | E[E]

e Example Program
var: integer;
var + 1023

A simple typed language

e A language that has a sequence of declarations
followed by a single expression

=

D—>D;D | 1Id:T

T—>char | Integer | array[num]ofT
E—>literal | num | id | E+E | E[E]

e What are the semantic rules of this language?

Parser actions

P > D; E

D —»> D; D

D s id: T { addtype(id.entry, T.type); }
T — char { T.type = char; }

T — Integer { T.type = integer; }

T — array [num] of T,
{ T.type — array(T,.type, num.val); }

Parser actions

E — literal { E.type — char; }
E > num { E.type = integer; }
E— id {E.type = lookup_type(id.name); }

Parser actions

E—>E, +E { If E,.type == Iinteger and
E, .type == integer then
E.type = Integer
else
E.type = type_error

Parser actions

E—>E, [E] { if E,.type —— Integer and
E, .type == array(s, t) then
E.type — S
else
E.type = type_error

Type Equivalence

e How do we know If two types are equal?
— Same type entry

— Example:
int A[128];
foo(A);

foo(int B[128]) { .. }

e Two different type entries in different symbol tables
e But they should be the same

Structural Equivalence

e |f the type expression of two types have
the same construction, then they are
equivalent

e “Same construction”

— Equivalent base types

— Same set of type constructors are applied In
the same order (i.e. equivalent type tree)

Type Coercion

e Implicit conversion of one type to another
type
e Example
int A;
float B;
B=B+ A
e Two types of coercion
— widening conversions
— narrowing conversions

Narrowing conversions

e Conversions that may loose information

e Examples:
— Integers to chars
— longs to shorts

e Rare In languages

Widening conversions

e Conversions without loss of information

e Examples:
— Integers to floats
— shorts to longs

e What is done in many languages (including
decaf)

Widening Conversions

e Basic Principle: Hierarchy of number types
— Int - float = double

e All coercions go up hierarchy
— Int to float;
— Int, float to double

e Result is type of operand highest up In hierarchy
— Int + float Is float

— Int + double Is double
— float + double 1s double

Type casting

e Explicit conversion from one type to another
e Both widening and narrowing

e Example
int A;
float B;
A - A+ (int)B

e Unlimited typecasting can be dangerous

Question:

e Can we assign a single type to all variables,
functions and operators?

e How about +, what Is its type?

Overloading

- Some operators may have more than one

type.

e Example
int A, B, C;
float X, Y, Z;
A=A+ B
X = X + Y

e Complicates the type system

— Example
A=A+ X
e What Is the type of + ?

Outline

e Practical Issues In Intermediate

Representation

e \What is semantic analysis?
e Type systems

e \What to check?

Parameter Descriptors

 WWhen build parameter descriptor, have
— name of type
— name of parameter

e \What Is the check?

— |Is name of type identifies a valid type?
e look up name in type symbol table

e If not there, look up name in program symbol table
(might be a class type)

e |If not there, fails semantic check

Local Descriptors

 \When build local descriptor, have
— name of type
— name of local

e \What Is the check?

— |Is name of type identifies a valid type?
e look up name in type symbol table

e If not there, look up name in program symbol table
(might be a class type)

e |If not there, fails semantic check

Local Symbol Table

 WWhen building the local symbol table, have
a list of local descriptors

e \What to check for?
— duplicate variable names
— shadowed variable names

 When to check?
— when insert descriptor into local symbol table

e Parameter and field symbol tables similar

Class Descriptor

- When build class descriptor, have
— class name and name of superclass
— field symbol table
— method symbol table

e \What to check?

— Superclass name corresponds to actual class

— No name clashes between field names of subclass and
superclasses

— Overridden methods match parameters and return
type declarations of superclass

Load Instruction

 What does compiler have? Variable name.

e What does it do? Look up variable name.
— If in local symbol table, reference local descriptor

— If In parameter symbol table, reference parameter
descriptor

— If in field symbol table, reference field descriptor
— If not found, semantic error

Load Array Instruction

 What does compiler have?
— Variable name
— Array index expression

e \What does compiler do?
— Look up variable name (if not there, semantic error)
— Check type of expression (if not integer, semantic error)

Load Array Instruction

What else can/should be checked?

Add Operations

 What does compiler have?
— two expressions

 What can go wrong?
— expressions have wrong type
— must both be integers (for example)

e So compiler checks type of expressions
— load Instructions record type of accessed variable

— operations record type of produced expression
— S0 just check types, If wrong, semantic error

Type Inference for Add
Operations

e Most languages let you add floats, ints, doubles

e What are issues?
— Types of result of add operation
— Coercions on operands of add operation

e Standard rules usually apply

— If add an int and a float, coerce the int to a float, do
the add with the floats, and the result is a float.

— |If add a float and a double, coerce the float to a
double, do the add with the doubles, result is double

Store Instruction

e \What does compiler have?
— Variable name
— EXpression

e What does it do?
— Look up variable name.
e If in local symbol table, reference local descriptor
e |If In parameter symbol table, error
 If In field symbol table, reference field descriptor
e If not found, semantic error
— Check type of variable name against type of expression

e If variable type not compatible with expression
type, error

Store Array Instruction

e What does compiler have?
— Variable name, array index expression
— EXpression

e \What does it do?

— Look up variable name.
e If in local symbol table, reference local descriptor
e If in parameter symbol table, error
e If in field symbol table, reference field descriptor
e If not found, semantic error

Check that type of array index expression Is integer

— Check type of variable name against type of expression

e If variable element type not compatible with expression type,
error

Method Invocations

 \What does compiler have?
— method name, receiver expression, actual parameters

e Checks:

— receiver expression is class type
— method name is defined in receiver’s class type

— types of actual y5,ame ters match types ot formal
parameters

— What does match mean?
e same type?
e compatible type?

Return Instructions

- What does compiler have?
— Expression

e Checks:
— If the return type matches the expression?

Conditional Instructions

- What does compiler have?

— Expression for the if-condition and the
statement list of then (and else) blocks

e Checks:

— If the conditional expression producing a
Boolean value?

Semantic Check Summary

Do semantic checks when build IR

Many correspond to making sure entities are
there to build correct IR

Others correspond to simple sanity checks
Each language has a list that must be checked

Can flag many potential errors at compile time

IT OpenCourseWare
ttp://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

