
MIT 6 035MIT 6.035
Parse Table Construction

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Parse Tables (Review)

ACTION Goto
State () $ X
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

• Implements finite state control
• At each step, look up

T bl [f k] [i b l]• Table[top of state stack] [input symbol]
• Then carry out the action

Parse Tables (Review)

ACTION Goto
State () $ X
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

• Shift to sn
• Push input token into the symbol stack
• Push sn into state stack
• Advance to next input symbol

Parse Tables (Review)

ACTION Goto
State () $ X
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

• Reduce (n)
• Pop both stacks as many times as the number

f b l th RHS f lof symbols on the RHS of rule n
• Push LHS of rule n into symbol stack

Parser Generators and Parse Tables

• Parser generator (YACC, CUP)
• Given a grammar
• Produces a (shift-reduce) parser for that grammar

• Process grammar to synthesize a DFA
• Contains states that the parser can be in
• State transitions for terminals and non-terminals

• Use DFA to create an parse table
• Use parse table to generate code for parser

() ()

Examplep

• The grammar

S → X $ (1)
X → (X) (2)
X → () (3)

DFA States Based on Items

• We need to capture how much of a given
production we have scanned so farproduction we have scanned so far

X (X)X → (X)

Are we here? Or here? Or here? Or here?

•

Items

• We need to capture how much of a given
production we have scanned so farproduction we have scanned so far

X (X)
• Production Generates 4 items

X → (X)
Production Generates 4 items
• X → • (X)
• X → (• X)
• X → (X •)
• X → (X) •

X (X)

X → X

Example of Itemsp

• The grammar • Items
S → X $
X → (X)
X → ()

S → • X $
S → X • $

X → () X → • (X)
X → (• X)
X → (X •)()
X → (X) •
X → • ()
X → (•)
X → () •

Notation

• If write production as A → α c β

• α is sequence of grammar symbols, can be α is sequence of grammar symbols, can be
terminals and nonterminals in sequence

• c is terminal
• β is sequence of grammar symbols, can be

terminals and nonterminals in sequence
• If write production as A→ α • B β

• α, β as above
• B is a single grammar symbol, either terminal or

nonterminal

• arser to eve r u•

If th t t t i th it S $

Parser

Key idea behind items
• States correspond to sets of items
• If the state contains the item A → α • c β

P is expecting ntually educe sing the Parser is expecting to eventually reduce using the
production A → α c β

• Parser has already parsed an αy p
• It expects the input may contain c, then β

• If the state contains the item A → α •
• Parser has already parsed an α
• Will reduce using A → α

• If the state contains the item S → α • $
and the input buffer is empty
– accepts inputaccepts input Parser

• •

p p y

Correlating Items and Actions

• If the current state contains the item A → α • c β
and the current symbol in the input buffer is cand the current symbol in the input buffer is c
• Parser shifts c onto stack

Next state will contain A → α c • βNext state will contain A → α c β

• If the current state contains the item A → α •
• Parser reduces using A → αParser reduces using A → α

• If the current state contains the item S → α • $
and the input buffer is empty
• Parser accepts input

•

•

t

• → → •• • •

Closure() of a set of items

• Closure finds all the items in the same “state”
Fi d P i Al ith f Cl (I)• Fixed Point Algorithm for Closure(I)
• Every item in I is also an item in Closure(I)

If A • B β is in Closure(I) and B isIf A→ α B β is in Closure(I) and B→ γ is
an item, then add B→ • γ to Closure(I)
Repeat until no more new items can be addedRepeat until no more new items can be added
to Closure(I)

•

•

X ()

Example of Closure p

• Closure({X→ (• X)}) • Items
S → • X $
S → X • $
X → • (X)

X → (• X)
X → • (X)

X → (X)
X → (• X)
X → (X •)

X → • ()

X → (X) •
X → • ()
X ()X → (•)
X → () •

•

X ()

Another Examplep

• closure({S → • X $}) • Items

S→ • X $
X → • (X)

S → • X $
S → X • $
X → • (X) X → • () X → (X)
X → (• X)
X → (X •)
X → (X) •
X → • ()
X ()X → (•)
X → () •

•

β β

over

Goto() of a set of items

• Goto finds the new state after consuming a
grammar symbol while at the current stategrammar symbol while at the current state

Algorithm for Goto(I X)Algorithm for Goto(I, X)
where I is a set of items
and X is a grammar symbol

Goto(I, X) = Closure({ A→ α X • β | A→ α • X β in I })

• goto is the new set obtained by “moving
the dot” Xthe dot over X

•

•

Example of Gotop

• Goto ({X → (• X)}, X) • Items

X → (X •)
S → • X $
S → X • $
X → • (X)X → (X)
X → (• X)
X → (X •)
X → (X) •
X → • ()
X ()X → (•)
X → () •

•

X ()

Another Example of Gotop

• Goto ({X → •(X)}, () • Items
S → • X $
S → X • $
X → • (X)

X → (• X)
X → • (X)

X → (X)
X → (• X)
X → (X •)

X → • ()

X → (X) •
X → • ()
X ()X → (•)
X → () •

Building the DFA states

• Start with the item S → • β $
• Create the first state to be Closure({ S → • β $})
• Pick a state I

• for each item A→ α • X β in I
• find Goto(I, X)
• if Goto(I, X) is not already a state, make one
• Add an edge X from state I to Goto(I, X) state

• Repeat until no more additions possible

$

→ ••

5 4

DFA Example

S → X • $
s1X

S → • X $
X → • (X)
X → • ()

s0
X → (• X)
X → (•)
X (X)

s2

(s3
(

X → (X)
X → • ()

(
X → (X •)

X

s3

))S → X $
X → () •

)s5
X → (X) •

s4S → X $
X → (X)
X → ()

Constructing A Parse Engine

• Build a DFA - DONE

• Construct a parse table using the DFA

T iti t th t t i t i l i t

Creating the parse tables

• For each state

• Transition to another state using a terminal symbol is a
shift to that state (shift to sn)

• Transition to another state using a non-terminal is a goto
to that state (goto sn)

• If there is an item A → α • in the state
do a reduction with that production for all terminals
(reduce k)

Building Parse Table Example
ACTION Goto

State () $ X
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error goto s3
s3 error shift to s4 error
4 d (2) d (2) d (2)s4 reduce (2) reduce (2) reduce (2)

s5 reduce (3) reduce (3) reduce (3)

S → X • $
s1X

S → • X $
X → • (X)
X → • ()

s0
S → $

X → (• X)
X → (•)
X (X)

s2

(s3
(

X → • (X)
X → • ()

(
X → (X •)

X

s3

))S → X $

X → () •

)s5
X → (X) •

)
s4X → (X)

X → ()

•

t t t t

Can to look ahead

Potential Problem

• No lookahead
• Vulnerable to unnecessary conflicts

• Shift/Reduce Conflicts (may reduce too soon in
some cases)
Reduce/Reduce ConflictsReduce/Reduce Conflicts

• Solution: Lookahead
• Only for reductions - reduce only when next Only for reductions reduce only when next

symbol can occur after nonterminal from
production
S ti l k h d lit b d• Systematic lookahead, split states based on next
symbol, action is always a function of next symbol

• Can generalize to look ahead multiple symbolsgeneralize multiple symbols

•

e ne n

•

t t

Reduction-Only Lookahead Parsing

• If a state contains A→ β •
Red b A β onl if inp mbol• Reduce by A→ β only if next input symbol can
follow A in some derivation
Example GrammarExample Grammar

S → X $
X → a
X → a bX → a b

•

Parser Without Lookahead

ACTION Goto
State a b $ X$
s0 shift to s1 error error goto s3
s1 reduce(2) S/R Conflict reduce(2)
s2 reduce(3) reduce(3) reduce(3)s2 reduce(3) reduce(3) reduce(3)
s3 error error accept

s3

S → • X $
S → X • $

X → a b •

s0
s3

s2X

X → • a
X → • a b X → a •

X → a b •
s1

a
b S → X $

X → a • ba X → a
X → a b

•

d d i i h h d i h h

Creating parse tables with reduction-
only lookaheadonly lookahead

• For each state
• Transition to another state using a terminal symbol is a

shift to that state (shift to sn) (same as before)
Transition to another state using a non terminal is a goto Transition to another state using a non-terminal is a goto
that state (goto sn) (same as before)

• If there is an item X → α • in the state
do a reduction with that production whenever the current
input symbol T may follow X in some derivation (more
precise than before)

• Eliminates useless reduce actions

•

New Parse Table
b never follows X in any derivation
resolve shift/reduce conflict to shift

ACTION Goto
State a b $ X

/

State a b $
s0 shift to s1 error error goto s3
s1 reduce(2) shift to s2 reduce(2)
s2 reduce(3) reduce(3) reduce(3)s2 reduce(3) reduce(3) reduce(3)
s3 error error accept

s3

S → • X $
S → X • $

X → a b •

s0
s3

s2X

X → • a
X → • a b X → a •

X → a b •
s1

a
b S → X $

X → a • ba
X → a
X → a b

•

More General Lookahead

• Items contain potential lookahead information,
resulting in more states in finite state controlresulting in more states in finite state control

• Item of the form [A → α • β T] says
The parser has parsed an αThe parser has parsed an α

• If it parses a β and the next symbol is T
• Then parser should reduce by A → α βThen parser should reduce by A → α β

• In addition to current parser state, all parserIn addition to current parser state, all parser
actions are function of lookahead symbols

•

•

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques
•

•

()

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques

()

•

•

()

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques

• L - parse from left to right
• R - parse from right to left

()

•

•

()

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques

• L - leftmost derivation
• R - rightmost derivation

()

•

•

()

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques

• Number of lookahead characters

()

•

•

Terminology

• Many different parsing techniques
Each can handle some set of CFGsEach can handle some set of CFGs

• Categorization of techniques

• Examples: LL(0), LR(1)
• This lecture () • LR(0) parser

• SLR parser – LR(0) parser augmented with
follow information

()L R k

follow information

•

•

•

Summary

• Parser generators – given a grammar, produce a parser
Standard techniqueStandard technique
• Automatically build a pushdown automaton
• Obtain a shift-reduce parser

• Finite state control plus push down stack
• Table driven implementation

Conflicts: Shift/Reduce Reduce/Reduce Conflicts: Shift/Reduce, Reduce/Reduce
• Use of lookahead to eliminate conflicts

• SLR parsing (eliminates useless reduce actions)
• LR(k) parsing (lookahead throughout parser)

•

•

-

Follow() sets in SLR ParsingFollow() sets in SLR Parsing

For each non-terminal A Follow(A) is the set of For each non terminal A, Follow(A) is the set of
terminals that can come after A in some derivation

If A B β i d ti d β d i

Constraints for Follow()

• $ ∈ Follow(S), where S is the start symbol

Constraints for Follow()

• If A → αB β is a production then First(β) ⊆ Follow(B)
• If A → αB is a production then Follow(A) ⊆ Follow(B)
• If A → αB β is a production and β derives ε

then Follow(A) ⊆ Follow(B)

=

hil F ll t k h i

p

Algorithm for Follow g

for all nonterminals NT
Follow(NT) = {}

Follow(S) = { $ }
while Follow sets keep changing

for all productions A → αB β

Follow(B) = Follow(B) ∪ First(β)Follow(B) Follow(B) ∪ First(β)
if (β derives ε) Follow(B) = Follow(B)∪Follow(A)

for all productions A → αB
Follow(B) = Follow(B)∪Follow(A)

$

S $

() { }

Augmenting Example with Follow

• Example Grammar for Follow

S → X $
X → a
X → a b

Follow(S) = { $ }
Follow(X) = { $ }

SLR Eliminates Shift/Reduce Conflict

ACTION Goto
State a b $ X
s0 shift to s1 error error goto s3
s1 reduce(2) shift to s2 reduce(2)() ()
s2 reduce(3) reduce(3) reduce(3)
s3 error error accept

S X $
S → X • $s0
s3

s2X b∉Follow(X)
S → • X $
X → • a
X → • a b X → a •

X → a b •
s1

bX → a •
X → a • ba

b

t

Basic Idea Behind LR(1)

• Split states in LR(0) DFA based on lookahead
R d b d i d l k h d• Reduce based on item and lookahead

• •

LR(1) Items()
• Items will keep info on

• production
• right-hand-side position (the dot)
• look ahead symbol

LR(1) item is of the form [A → α • β T]LR(1) item is of the form [A → α β T]
• A → α β is a production
• The dot in A → α • β denotes the position
• T is a terminal or the end marker ($)

•

Meaning of LR(1) Itemsg ()

• Item [A → α • β T] means
• The parser has parsed an α

• If it parses a β and the next symbol is T
• Then parser should reduce by A → α β

• •

()

()

X X

[$ $] → •

X → X $

• The grammar
S → X $

• Terminal symbols
• ‘(‘ ‘)’ X → (X)

X → ε

()

• End of input symbol
• ‘$’

[S → • X $)]
[S → • X $ (] [X → (X •)]

LR(1) Items

[S → • X $ $]
[S → X • $)]
[S → X • $ (]
S X

[X → (X •) (]
[X → (X •) $]
[X → (X) •)]
[X (X) • (] [S → X • $ $]

[X → • (X))]
[X → • (X) (]
[X → • (X) $]

[X → (X) (]
[X → (X) • $]
[X → •)]
[X → • (] [X → (X) $]

[X → (• X))]
[X → (• X) (]
[X → (• X) $]

[X → (]
[X → • $]

[()]

t t t t tN d id l i h h DFA

N d t id l ith t t th

Creating a LR(1) Parser Engineg () g

• Need to define Closure() and Goto() functions for
LR(1) items

• Need to provide an algorithm to create the DFA

• Need to provide an algorithm to create the parse
table

Closure algorithmg

Closure(I)
repeat

for all items [A → α • X β c] in I
for any production X → γ

for any d ∈ First(βc)

I = I ∪ { [X → • γ d] }
until I does not change

()

Goto algorithmg

Goto(I, X)
J = { }
for any item [A → α • X β c] in I

J = J ∪ {[A → α X • β c]}
return Closure(J)

Building the LR(1) DFA g ()

• Start with the item [<S’> → • <S> $ I]
• I irrelevant because we will never shift $

• Find the closure of the item and make an state
• Pick a state I

• for each item [A→ α • X β c] in I
• find Goto(I, X)
• if Goto(I, X) is not already a state, make one
• Add an edge X from state I to Goto(I, X) state

• Repeat until no more additions possible

Creating the parse tablesg p

• For each LR(1) DFA state

• Transition to another state using a terminal
symbol is a shift to that state (shift to sn)

• Transition to another state using a non-terminal
symbol is a goto that state (goto sn)

• If there is an item [A → α • a] in the state,
action for input symbol a is a reduction via the
production A → α (reduce k)production A → α (reduce k)

•

LALR(1) Parser ()

• Motivation
• LR(1) parse engine has a large number of states
• Simple method to eliminate states

• If two LR(1) states are identical except for the look
ahead symbol of the items
Then Merge the statesThen Merge the states

• Result is LALR(1) DFA
• Typically has many fewer states than LR(1)Typically has many fewer states than LR(1)
• May also have more reduce/reduce conflicts

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

