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Parse Tables (Review)

ACTION Goto
State ( ) $ X
s0 shift to s2 error error goto s1
s1 error error accept  
s2 shift to s2 shift to s5 error  goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

• Implements finite state control
• At each step, look up 

T bl [ f k] [ i b l]• Table[top of state stack] [ input symbol]
• Then carry out the action



Parse Tables (Review)

ACTION Goto
State ( ) $ X
s0 shift to s2 error error goto s1
s1 error error accept  
s2 shift to s2 shift to s5 error  goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

• Shift to sn
• Push input token into the symbol stack
• Push sn into state stack
• Advance to next input symbol 



Parse Tables  (Review)

ACTION Goto
State ( ) $ X
s0 shift to s2 error error goto s1
s1 error error accept  
s2 shift to s2 shift to s5 error  goto s3
3 hift t 4s3 error shift to s4 error

s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

• Reduce (n)
• Pop both stacks as many times as the number 

f b l th RHS f lof symbols on the RHS of rule n
• Push LHS of rule n into symbol stack



Parser Generators and Parse Tables 

• Parser generator (YACC, CUP) 
• Given a grammar 
• Produces a (shift-reduce) parser for that grammar 

• Process grammar to synthesize a DFA 
• Contains states that the parser can be in 
• State transitions for terminals and non-terminals 

• Use DFA to create an parse table 
• Use parse table to generate code for parser 



 
( ) ( )

Examplep

• The grammar 

S → X $  (1)  
X → (X ) (2) 
X → ( ) (3) 



DFA States Based on Items 

• We need to capture how much of a given 
production we have scanned so farproduction we have scanned so far 

X ( X )X → ( X ) 

Are we here? Or here? Or here? Or here? 



•

Items 

• We need to capture how much of a given 
production we have scanned so farproduction we have scanned so far 

X ( X ) 
• Production Generates 4 items 

X → ( X ) 
Production Generates 4 items 
• X → • (X ) 
• X → ( • X ) 
• X → (X • ) 
• X → (X ) • 



 

    

X (X )

X → X

Example of Itemsp

• The grammar • Items  
S → X $ 
X → (X ) 
X → ( )  

S → • X $ 
S → X • $ 

X → ( ) X → • (X ) 
X → ( • X ) 
X → (X • )( ) 
X → (X ) • 
X → • ( ) 
X → ( • ) 
X → ( ) • 



Notation 

• If write production as A → α c β 

• α is sequence of grammar symbols, can be α is sequence of grammar symbols, can be 
terminals and nonterminals in sequence 

• c is terminal 
• β is sequence of grammar symbols, can be 

terminals and nonterminals in sequence 
• If write production as A→ α • B β 

• α, β as above 
• B is a single grammar symbol, either terminal or 

nonterminal 



• arser to eve r u•

If th t t t i th it S $

Parser

Key idea behind items 
• States correspond to sets of items 
• If the state contains the item A → α • c β 

P is expecting ntually educe sing the Parser is expecting to eventually reduce using the 
production A → α c β 

• Parser has already parsed an αy p  
• It expects the input may contain c, then β 

• If the state contains the item A → α • 
• Parser has already parsed an α 
• Will reduce using A → α  

• If the state contains the item S → α • $ 
and the input buffer is empty 
– accepts inputaccepts input Parser



• •

p p y

Correlating Items and Actions 

• If the current state contains the item A → α • c β 
and the current symbol in the input buffer is cand the current symbol in the input buffer is c 
• Parser shifts c onto stack 

Next state will contain A → α c •  βNext state will contain A → α c β 

• If the current state contains the item A → α • 
• Parser reduces using A → αParser reduces using A → α 

• If the current state contains the item S → α • $ 
and the input buffer is empty 
• Parser accepts input 

• 



•
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Closure() of a set of items 

• Closure finds all the items in the same “state” 
Fi d P i Al ith f Cl (I)• Fixed Point Algorithm for Closure(I) 
• Every item in I is also an item in Closure(I) 

If A • B  β is in Closure(I) and B isIf A→ α B β is in Closure(I) and B→ γ is 
an item, then add B→ • γ to Closure(I) 
Repeat until no more new items can be addedRepeat until no more new items can be added 
to Closure(I) 

• 



•

 

    

X ( )

Example of Closure p

• Closure({X→ ( • X )}) • Items  
S → • X $ 
S → X • $ 
X → • (X ) 

X → ( • X ) 
X → • (X ) 

X → (X ) 
X → ( • X ) 
X → (X • ) 

X → • ( ) 

X → (X ) • 
X → • ( ) 
X ( )X → ( • ) 
X → ( ) • 



•

 

    

X ( )

Another Examplep

• closure({S → • X $}) • Items  

S→ • X $ 
X → • (X ) 

S → • X $ 
S → X • $ 
X → • (X ) X → • ( ) X → (X ) 
X → ( • X ) 
X → (X • ) 
X → (X ) • 
X → • ( ) 
X ( )X → ( • ) 
X → ( ) • 



•
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over

Goto() of a set of items 

• Goto finds the new state after consuming a 
grammar symbol while at the current stategrammar symbol while at the current state 

Algorithm for Goto(I X)Algorithm for Goto(I, X) 
where I is a set of items 
and X is a grammar symbol 

Goto(I, X) = Closure( { A→ α X • β | A→ α • X β in I }) 

• goto is the new set obtained by “moving 
the dot” Xthe dot over X 

• 



 

•

 

    

Example of Gotop

• Goto ({X → ( • X )}, X ) • Items  

X → (X • ) 
S → • X $ 
S → X • $ 
X → • (X )X → (X ) 
X → ( • X ) 
X → (X • ) 
X → (X ) • 
X → • ( ) 
X ( )X → ( • ) 
X → ( ) • 



 

•

 

    

X ( )

Another Example of Gotop

• Goto ({X → •(X )}, () • Items  
S → • X $ 
S → X • $ 
X → • (X ) 

X → ( • X ) 
X → • (X ) 

X → (X ) 
X → ( • X ) 
X → (X • ) 

X → • ( ) 

X → (X ) • 
X → • ( ) 
X ( )X → ( • ) 
X → ( ) • 



Building the DFA states 

• Start with the item S → • β $ 
• Create the first state to be Closure({ S → • β $}) 
• Pick a state I 

• for each item A→ α • X  β in I 
• find Goto(I,  X)  
• if Goto(I, X) is not already a state, make one 
• Add an edge X from state I to Goto(I, X) state 

• Repeat until no more additions possible 



$
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DFA Example 

S → X • $ 
s1X 

S → • X $ 
X → • (X ) 
X → • ( ) 

s0 
X → ( • X ) 
X → ( • ) 
X (X ) 

s2 

( s3 
( 

X → (X ) 
X → • ( ) 

( 
X → (X • ) 

X 

s3 

) )S → X $ 
X → ( ) • 

)s5 
X → (X ) • 

s4S → X $ 
X → (X ) 
X → ( ) 



Constructing A Parse Engine 

• Build a DFA - DONE 

• Construct a parse table using the DFA 



T iti t th t t i t i l i t

Creating the parse tables 

• For each state 

• Transition to another state using a terminal symbol is a 
shift to that state (shift to sn) 

• Transition to another state using a non-terminal is a goto 
to that state (goto sn) 

• If there is an item A → α • in the state 
do a reduction with that production for all terminals 
(reduce k) 



Building Parse Table Example
ACTION Goto

State ( ) $ X
s0 shift to s2 error error goto s1
s1 error error accept
s2 shift to s2 shift to s5 error  goto s3
s3 error shift to s4 error  
4 d (2) d (2) d (2)s4 reduce (2) reduce (2) reduce (2)

s5 reduce (3) reduce (3) reduce (3)  

S → X • $
s1X

S → • X $
X → • (X)
X → • ( )

s0
S → $

X → ( • X )
X → ( • )
X (X )

s2

( s3
(

X → • (X )
X → • ( )

(
X → (X • )

X

s3

) )S  → X $

X → ( ) •

)s5
X → (X ) •

)
s4X → (X )

X → (   )
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Can to look ahead

Potential Problem 

• No lookahead 
• Vulnerable to unnecessary conflicts 

• Shift/Reduce Conflicts (may reduce too soon in 
some cases) 
Reduce/Reduce ConflictsReduce/Reduce Conflicts 

• Solution: Lookahead 
• Only for reductions - reduce only when next Only for reductions reduce only when next 

symbol can occur after nonterminal from 
production 
S ti l k h d lit b d• Systematic lookahead, split states based on next 
symbol, action is always a function of next symbol 

• Can generalize to look ahead multiple symbolsgeneralize multiple symbols 

• 



e ne n

•

t t

Reduction-Only Lookahead Parsing 

• If a state contains A→ β • 
Red b A β onl if inp mbol• Reduce by A→ β only if next input symbol can 
follow A in some derivation 
Example GrammarExample Grammar 

S → X $ 
X → a 
X → a bX → a b 

• 



Parser Without Lookahead

ACTION Goto
State a b $ X$
s0 shift to s1 error error goto s3
s1 reduce(2) S/R Conflict reduce(2)  
s2 reduce(3) reduce(3) reduce(3)s2 reduce(3) reduce(3) reduce(3)
s3 error error accept  

s3

S → • X $
S → X • $

X → a b •

s0
s3

s2X

X → • a
X → • a b X → a •

X → a b •
s1

a
b S → X $

X → a • ba X → a
X → a b



•

d d i i h h d i h h

Creating parse tables with reduction-
only lookaheadonly lookahead 

• For each state 
• Transition to another state using a terminal symbol is a 

shift to that state (shift to sn) (same as before) 
Transition to another state using a non terminal is a goto Transition to another state using a non-terminal is a goto 
that state (goto sn) (same as before) 

• If there is an item X → α • in the state 
do a reduction with that production whenever the current 
input symbol T may follow X in some derivation (more 
precise than before) 

• Eliminates useless reduce actions 

• 



New Parse Table
b never follows X in any derivation
resolve shift/reduce conflict to shift

ACTION Goto
State a b $ X

/

State a b $
s0 shift to s1 error error goto s3
s1 reduce(2) shift to s2 reduce(2)  
s2 reduce(3) reduce(3) reduce(3)s2 reduce(3) reduce(3) reduce(3)
s3 error error accept  

s3

S → • X $
S → X • $

X → a b •

s0
s3

s2X

X → • a
X → • a b X → a •

X → a b •
s1

a
b S → X $

X → a • ba
X → a
X → a b



•

More General Lookahead 

• Items contain potential lookahead information, 
resulting in more states in finite state controlresulting in more states in finite state control 

• Item of the form [A → α • β T] says 
The parser has parsed an αThe parser has parsed an α 

• If it  parses  a  β and the next symbol is T 
• Then parser should reduce by A → α βThen parser should reduce by A → α β 

• In addition to current parser state, all parserIn addition to current parser state, all parser 
actions are function of lookahead symbols 

• 



•

Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 
• 
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( )

Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 

( ) 

• 
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( )

Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 

• L - parse from left to right 
• R - parse from right to left 

( ) 

• 
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( )

Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 

• L - leftmost derivation 
• R - rightmost derivation 

( ) 

• 
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Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 

• Number of lookahead characters 

( ) 

• 
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Terminology 

• Many different parsing techniques 
Each can handle some set of CFGsEach can handle some set of CFGs 

• Categorization of techniques 

• Examples: LL(0), LR(1) 
• This lecture ( ) • LR(0) parser 

• SLR parser – LR(0) parser augmented with 
follow information 

( )L R  k  

follow information 

• 



•
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Summary 

• Parser generators – given a grammar, produce a parser 
Standard techniqueStandard technique 
• Automatically build a pushdown automaton 
• Obtain a shift-reduce parser 

• Finite state control plus push down stack 
• Table driven implementation 

Conflicts: Shift/Reduce Reduce/Reduce Conflicts: Shift/Reduce, Reduce/Reduce 
• Use of lookahead to eliminate conflicts 

• SLR parsing (eliminates useless reduce actions) 
• LR(k) parsing (lookahead throughout parser) 

• 

• 



-

Follow() sets in SLR ParsingFollow() sets in SLR Parsing 

For each non-terminal A Follow(A) is  the  set  of  For each non terminal A, Follow(A) is the set of 
terminals that can come after A in some derivation 



If A B β i d ti d β d i

Constraints for Follow() 

• $  ∈ Follow(S ), where S is the start symbol 

Constraints for Follow() 

• If  A → αB β is a production then First(β) ⊆ Follow(B ) 
• If  A → αB is a production then Follow(A) ⊆ Follow(B ) 
• If A → αB β is a production and β derives ε 

then Follow(A) ⊆ Follow(B ) 



=
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Algorithm for Follow g

for all nonterminals NT 
Follow(NT) = {} 

Follow(S ) = { $ } 
while Follow sets keep changing 

for all productions A → αB β 

Follow(B ) = Follow(B ) ∪ First(β)Follow(B ) Follow(B ) ∪ First(β) 
if (β derives ε) Follow(B ) = Follow(B )∪Follow(A ) 

for all productions A → αB 
Follow(B ) = Follow(B )∪Follow(A ) 



$

S $

( ) { }

Augmenting Example with Follow 

• Example Grammar for Follow 

S → X $ 
X → a 
X → a b 

Follow(S ) = { $ } 
Follow(X ) = { $ } 



SLR Eliminates Shift/Reduce Conflict

ACTION Goto
State a b $ X
s0 shift to s1 error error goto s3
s1 reduce(2) shift to s2 reduce(2)( ) ( )
s2 reduce(3) reduce(3) reduce(3)
s3 error error accept  

S X $
S → X • $s0
s3

s2X b∉Follow(X)
S → • X $
X → • a
X → • a b X → a •

X → a b •
s1

bX → a •
X → a • ba

b



t

Basic Idea Behind LR(1) 

• Split states in LR(0) DFA based on lookahead 
R d  b  d  i  d  l  k h  d• Reduce based on item and lookahead 



• •

LR(1) Items( )
• Items will keep info on 

• production  
• right-hand-side position (the dot) 
• look ahead symbol 

LR(1) item is of the form [A → α • β T]LR(1) item is of the form [A → α β T] 
• A  → α β is a production 
• The dot  in  A  → α • β denotes the position 
• T is a terminal or the end marker ($) 

• 



Meaning of LR(1) Itemsg ( ) 

• Item [A  → α • β T] means 
• The parser has parsed an α 

• If it  parses a  β and the next symbol is T 
• Then parser should reduce by A → α β 



 

 

• •

( )

( )

X X

[ $ $] → •

X → X $

• The grammar 
S → X $ 

• Terminal symbols 
• ‘(‘ ‘)’ X → (X) 

X → ε  

( ) 

• End of input symbol 
• ‘$’  

[S → • X $  ) ]  
[S → • X $  ( ]  [X → (X • ) ] 

LR(1) Items 

[S → • X $  $ ]  
[S → X • $ ) ] 
[S → X • $           ( ] 
S X 

[X → (X • ) ( ] 
[X → (X • ) $ ] 
[X → (X) • ) ] 
[X (X) •  ( ]  [S → X • $ $] 

[X → • (X)  ) ]  
[X → • (X)  ( ]  
[X → • (X) $ ]  

[X → (X) ( ] 
[X → (X) • $ ] 
[X → • ) ] 
[X → • (  ]  [X → (X) $ ] 

[X → ( • X) ) ] 
[X → ( • X)  ( ]  
[X → ( • X) $ ]  

[X → ( ] 
[X → • $ ] 

[ ( ) ] 



t t t t tN d id l i h h DFA

N d t id l ith t t th

Creating a LR(1) Parser Engineg ( ) g 

• Need to define Closure() and Goto() functions for 
LR(1) items 

• Need to provide an algorithm to create the DFA 

• Need to provide an algorithm to create the parse 
table 



Closure algorithmg

Closure(I) 
repeat 

for all items [A → α • X  β c] in I 
for any production X → γ 

for any d ∈ First(βc) 

I = I ∪ { [X → • γ d] } 
until I does not change 



( )

Goto algorithmg

Goto(I, X) 
J = { } 
for any item [A → α • X  β c] in I 

J = J ∪ {[A → α X • β c]} 
return Closure(J) 



Building the LR(1) DFA g ( ) 

• Start with the item [<S’>  → • <S> $  I]  
• I irrelevant because we will never shift $ 

• Find the closure of the item and make an state 
• Pick a state I 

• for each item  [A→ α • X  β c] in I 
• find Goto(I,  X)  
• if Goto(I, X) is not already a state, make one 
• Add an edge X from state I to Goto(I, X) state 

• Repeat until no more additions possible 



Creating the parse tablesg p 

• For each LR(1) DFA state 

• Transition to another state using a terminal 
symbol is a shift to that state (shift to sn) 

• Transition to another state using a non-terminal 
symbol is a goto that state (goto sn) 

• If there is an item [A → α • a] in the state, 
action for input symbol a is a reduction via the 
production A → α (reduce k)production A → α (reduce k) 



•

LALR(1) Parser ( )

• Motivation 
• LR(1) parse engine has a large number of states 
• Simple method to eliminate states 

• If two LR(1) states are identical except for the look 
ahead symbol of the items 
Then Merge the statesThen Merge the states 

• Result is LALR(1) DFA 
• Typically has many fewer states than LR(1)Typically has many fewer states than LR(1) 
• May also have more reduce/reduce conflicts 
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