
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.035, Fall 2005 Handout 8 — Semantic Analysis Project Wednesday, September 21 

DUE: Thursday, October 06 

Warning: The static semantics phase of the project requires considerably more effort 
than the previous phase. 

Extend your compiler to find, report, and recover from semantic errors in Decaf programs. Most 
semantic errors can be checked by testing the rules enumerated in the section “Semantic Rules” 
of Handout 6. These rules are repeated at the end of this handout as well. However, you should 
read Handout 6 in its entirety to make sure that your compiler catches all semantic errors implied 
by the language definition. We have attempted to provide a precise statement of the semantic 
rules. If you feel some semantic rule in the language definition may have multiple interpretations, 
you should work with the interpretation that sounds most reasonable to you and clearly list your 
assumptions in your project documentation . 

This part of the project includes the following tasks: 

1. Add semantic actions to your CUP parser specification to construct a high­level intermediate 
representation (IR) tree, and to perform any semantic checks you choose to do as part of the 
parsing process. The problem of designing an IR will be discussed in the lectures; some hints 
are given in the final section of this handout. 

When running in debug mode, your driver should pretty­print the constructed IR tree in 
some easily­readable form suitable for debugging. 

2. Build symbol tables for the classes. (A symbol table is an environment, i.e. a mapping from 
identifiers to semantic objects such as variable declarations. Environments are structured 
hierarchically, in parallel with source­level constructs, such as class­bodies, method­bodies, 
loop­bodies, etc.) 

3. Perform all remaining semantic checks by traversing the IR and accessing the symbol tables. 
Note: the run­time checks are not required for this assignment. 

What to Hand In 

Follow the directions given in Handout 3 when writing up your project. Your design documentation 
should include a description of how your IR and symbol table structures are organized, as well as 
a discussion of your design for performing the semantic checks. 

The electronic portion of the hand­in procedure is similar to that of the previous segment. Provide 
a gzipped tar file named leNN­semantics.tar.gz in your group locker, where NN is your group 
number. This file should contain all relevant source code and a Makefile. Additionally, you should 
provide a Java archive, produced with the jar tool, named leNN­semantics.jar in the same 
directory. 



Unpacking the tar file and running make should produce the same Java archive. With the CLASSPATH 
set to leNN-parser.jar:<directory>/java_cup.jar:.., you should be able to run your compiler from the 
command line with: 

java Compiler <filename> 

The resulting output to the terminal should be a report of all errors encountered while compiling 
the file. Your compiler should give reasonable and specific error messages (with line numbers and 
identifier names) for all errors detected. It should avoid reporting multiple error messages for the 
same error. For example, if y has not been declared in the assignment statement “x=y+1;”, the 
compiler should report only one error message for y, rather than one error message for y, another 
error message for the +, and yet another error message for the assignment. 

After you implement the static semantic checker, your compiler should be able to detect and report 
all static (i.e., compile­time) errors in any input Decaf program, including lexical and syntax errors 
detected by previous phases of the compiler. In addition, your compiler should not report any 
messages for valid Decaf programs. However, we do not expect you to avoid reporting spurious 
error messages that get triggered by error recovery. It is possible that your compiler might mistak­
enly report spurious semantic errors in some cases depending on the effectiveness of your parser’s 
syntactic error recovery. 

Your semantic checker should verify that all decimal and hex integer literals in the input (which 
your scanner will have stored simply as strings) have numeric values within the range permitted 
by the specification in Handout 5. 

As mentioned, your compiler should have a debug mode in which the IR and symbol table data 
structures constructed by your compiler are printed in some form. This can be run from the 
command line by 

java Compiler ­debug <filename> 

Test Cases 

The test cases provided for this project are on the course server. 

Read the comments in the test cases to see what we expect your compiler to do. Points will be 
awarded based on how well your compiler performs on these and hidden tests cases. Complete 
documentation is also required for full credit. 

Semantic Rules 

These rules place additional constraints on the set of valid Decaf programs besides the constraints 
implied by the grammar. A program that is grammatically well­formed and does not violate any 
of the following rules is called a legal program. A robust compiler will explicitly check each of 
these rules, and will generate an error message describing each violation it is able to find. A robust 
compiler will generate at least one error message for each illegal program, but will generate no 
errors for a legal program. 

2 



1. No identifier is declared twice in the same scope. 

2. No identifier is used before it is declared. 

3. The program contains a definition for a method called main that has no parameters (note 
that since execution starts at method main, any methods defined after main will never be 
executed). 

4. The �int literal� in an array declaration must be greater than 0. 

5. The number and types of arguments in a method call must be the same as the number and 
types of the formals i.e., the signatures must be identical. 

6. If a method call is used as an expression, the method must return a result. 

7. A return statement must not have a return value unless it appears in the body of a method 
that is declared to return a value. 

8. The expression in a return statement must have the same type as the declared result type 
of the enclosing method definition. 

9. An �id� used as a �location� must name a declared local/global variable or formal parameter. 

10. For all locations of the form �id�[�expr�] 

(a) �id� must be an array variable, and 

(b) the type of �expr� must be int. 

11. The �expr� in if and while statements must have type boolean. 

12. The operands of �arith op�s and �rel op�s must have type int. 

13. The operands of �eq op�s must have the same type, either int or boolean. 

14. The operands of �cond op�s and the operand of logical not (!) must have type boolean. 

15. The �location� and the �expr� in an assignment, �location� = �expr�, must have the same type. 

16. All break and continue statements must be contained within the body of a loop. 

Implementation Suggestions 

•	 You will need to declare classes for each of the nodes in your IR. In many places, the hierarchy 
of IR node classes will resemble the language grammar. For example, a part of your inheritance 
tree might look like this (where indentation represents inheritance): 

abstract class Ir 
abstract class IrExpression 
abstract class IrLiteral 

class IrIntLiteral 
class IrBooleanLiteral 
class IrCallExpr 
class IrMethodCallExpr 

3




class

class


abstract class

class

class

class

class

class

class

class

class

class


abstract class

class

class

.

.

.

class

class


IrCalloutExpr 
IrBinopExpr 

IrStatement

IrAssignStmt

IrBreakStmt

IrContinueStmt

IrIfStmt

IrWhileStmt

IrReturnStmt

IrInvokeStmt

IrBlock


IrClassDecl 
IrMemberDecl


IrMethodDecl

IrFieldDecl


IrVarDecl

IrType


Classes such as these implement the abstract syntax tree of the input program. In its simplest 
form, each class is simply a tuple of its subtrees, for example: 

public class IrBinopExpr extends IrExpression 
{


private final int operator; |

private final IrExpression lhs; +

private final IrExpression rhs; / \


}	 lhs rhs 

or: 

public class IrAssignStmt extends IrStatement 
{ :=


private final IrLocation lhs; / \

private final IrExpression rhs; lhs rhs


} 

In addition, you’ll need to define classes for the semantic entities of the program, which 
represent abstract properties (e.g. expression types, method signatures, class descriptors, 
etc.) and to establish the correspondences between them. Some examples: every expression 
has a type; every variable declaration introduces a variable; every block defines a scope. Many 
of these properties are derived by recursive traversals over the tree. 

As far as possible, you should try to make instances of the the symbol classes canonical, so 
that they may be compared using reference equality. You are strongly advised to design these 
classes with care, employing good software­engineering practise and documenting them, as 
you will be living with them for the next few months! 

•	 All error messages should be accompanied by the filename and line number of the token most 
relevant to the error message (use your judgement here). This means that, when building 

4




your abstract­syntax tree (or AST), you must ensure that each IR node contains sufficient

information for you to determine its line number at some later time.


(Some industrial compilers, e.g. the Jikes compiler for Java, associates with each IR node

the start and end character positions of the first and last tokens included in that construct,

allowing its error messages to report exactly which part of a source line contains an error.

This can also be done easily with the JavaCUP framework, which exposes the left and right

character positions of each grammar symbol n in the variables left and right.)


It is not appropriate to throw an exception when encountering an error in the input: doing

so would lead to a design in which at most one error message is reported for each run of the

compiler. A good front­end saves the user time by reporting multiple errors before stopping,

allowing the programmer to make several corrections before having to restart compilation.


•	 Semantic checking should be done top­down. Recall that AST construction in LR­parsers 
is done bottom­up. While the type­checking component of semantic checking can be done in 
bottom­up fashion, other kinds of checks (for example, detecting uses of undefined variables) 
can not. 

There are two ways of achieving this. The first is to make use of parser actions in the middle 
of productions, for example: 

block ::= LBRACK

statements:s

RBRACK


{: envs.push(new Env()); :} 
{: checkStmts(s); :} 
{: envs.pop(); :} 

In this production, a new environment is created and pushed on the environment stack, the 
body of the block is then checked in the context of this environment stack, and then the new 
environment is discarded when the end of the block is reached. This approach requires less 
code but can be more complex, because it changes the production rules of the grammar in 
ways which can introduce conflicts. 

A cleaner approach is to invoke your semantic checker on a complete AST after parsing has 
finished. The pseudocode for block in this approach would resemble this: 

void checkBlock(EnvStack envs, Block b) {

envs.push(new Env());

foreach s in b.statements


checkStatement(envs, s);

envs.pop();


}


The semantic check can thus be expressed as a visitor (which should be familiar from Design 
Patterns or 6.170) over the AST. (Since code generation, certain optimizations, and pretty­
printing can also be naturally expressed as visitors, we recommend this approach for a cleaner 
implementation.) 

•	 The treatment of negative integer literals requires some care. Recall from the previous hand­
out that negative integer literals are in fact two separate tokens: the positive integer literal 
and a preceding ‘­’. Whenever your top­down semantic checker finds a unary minus operator, 
it should check if its operand is a positive integer literal, and if so, replace the subtree (both 
nodes) by a single, negative integer literal. 

5 


