
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.035, Fall 2005 Handout 3 — Project Overview Wednesday, September 7 

This is an overview of the course project and how we’ll grade it. You should not expect to un­
derstand all the technical terms, since we haven’t yet covered them in class. We’re handing it out 
today to give you some idea of the kind of project we’re assigning, and to let you know the various 
due dates. Handout 5 describes the technical details of the project. 

The class will be partitioned into groups of three students. You will be allowed to choose your own 
partners as much as possible. Each group is to write, in Java, a compiler for a simple programming 
language. We expect all groups to complete all phases successfully. The start of the class is very 
fast­paced: do not fall behind! 

Important Project Dates 

Wednesday, September 7 Scanner­Parser Project assigned 

Monday, September 19 Scanner­Parser Project due 
Semantic Checker assigned 

Monday, September 26 Semantic Checker due 
Code Generation assigned 

Tuesday, October 11 Code Generation due 
Data Optimization assigned 

Monday, November 7 Data Optimization due 
Instruction Optimization assigned 

Monday, December 5 Instruction Optimization due 

Wednesday, December 7 Compiler Derby 

The Project Segments 

Descriptions of the six parts of the compiler follow in the order that you will build them. 

Scanner 

This part scans the input stream (the program), and encodes it in a form suitable for the remainder 
of the compiler. You will need to decide exactly what you want the set of tokens to be and create 

1




the regular expressions for the scanner generator. The convention for this partitioning is quite 
standard in practice. 

We’ll supply a scanner generator (JLex). This will consist of a program that takes a specification 
of the set of token types and outputs a Java program, the scanner. This specification uses regular 
definitions to describe which lexical tokens, i.e., character sequences, are mapped to which token 
types. The resulting scanner processes the input source code by interpreting the DFA (Deterministic 
Finite Automaton) that corresponds to the regular definition. 

Parser 

The parser checks the syntactic correctness of the token stream generated by the scanner, and 
creates an intermediate representation of the program that is used in code generation. You’ll also 
need to build the symbol table, since you won’t be able to build the code generator without it. 

We’ll supply a parser generator (Java CUP). This will consist of a primitive table­driven parser and 
a program that converts an LALR(1) grammar into a parse table suitable for use by that parser. 
You will have to transform the reference grammar into an LALR(1) grammar. 

Semantic Checker 

This part checks that various non­context free constraints, e.g., type compatibility, are observed. 
We’ll supply a complete list of the checks. It also builds a symbol table in which the type and 
location of each identifier is kept. The experience from past years suggests that many groups 
underestimate the time required to complete the static semantic checker, so you should pay special 
attention to this deadline. 

It is important that you build the symbol table, since you won’t be able to build the code generator 
without it. However, the completeness of the checking will not have a major impact on subsequent 
stages of the project. At the end of this project the front­end of your compiler is complete and you 
have designed the intermediate representation (IR) that will be used by the rest of the compiler. 

Code Generation 

THIS IS A VERY TIME­CONSUMING PROJECT. For example, in previous years, it has been 
done in two parts. YOU NEED TO START EARLY! 

In this assignment you will create a working compiler by generating unoptimized x86 assembly code 
from the intermediate format you generated in the previous assignment. Because you have relatively 
little time for this project you should concentrate on correctness and leave any optimization hacks 
out, no matter how simple. 

The steps of codegen are as follows: first, the rich semantics of Decaf are broken­down into a simple 
intermediate representation. For example, constructs such as loops and conditionals are expanded 
to code segments with simple goto or jump instructions. Next, the intermediate representation 
is matched with the Application Binary Interface, i.e. the calling convention and register usage. 
Then, the corresponding x86 machine code is generated. Finally, the code, data structures, and 
storage are laid­out in the assembly format. We’ll provide a description of the object language as 
well as a Java interface. The object code created using this interface will then be run on a testing 
machine (more on the testing machines soon). 

2 



This assignment has a checkpoint. At the checkpoint date, the group has to submit the code 
they have written so far. The checkpoint is there to strongly encourage you to start working on 
the project early. If you get your project working at the end, the checkpoint will have no effect. 
However, if your group is unable to complete the project, the checkpoint submission has a critical 
role in your grade. If we determine that your group did not do a substantial amount of work before 
the checkpoint, you will be severely penalized. 

The code generation checkpoint is scheduled on the calendar linked on the website. 

Data­flow Optimizations 

This assignment consists of optimizing the code generated by your compiler. We’ll provide a 
description of the optimizations that must be implemented in a later handout. You may implement 
additional dataflow optimizations if you wish. As before, the object code created after this phase 
will be simulated using the SPIM simulator. 

This assignment also has a checkpoint. Check the schedule! 

Instruction Optimizations 

In this assignment, you’ll implement a set of instruction­level optimizations such as register al­
location and instruction scheduling. These low­level optimizations are crucial for obtaining high 
performance on modern microprocessors. 

This assignment also has a checkpoint. Check the schedule! 

Grading 

Make sure you understand this section so you won’t be penalized for trivial oversights. The entire 
project is worth 70% of your 6.035 grade. The remaining 30% comes from three quizzes, each worth 
10%. The projects will be graded as follows: 

•	 (10%) Design and Documentation (subjective). Your score will be based on the quality of your 
design, clarity of your design documentation, and incisiveness of your discussion on design 
alternatives and issues. For some parts of the project we’ll require additional documentation. 
Always read the What to Hand In section. 

•	 (90%) Implementation (objective). Points will be awarded for passing specific test cases. 
Each project will include specific instructions for how your program should execute and what 
the output should be. If you have good reasons for doing something differently, consult your 
TA first. 

–	 Public Tests (30%) 

–	 Hidden Tests (60%) 

All members of a group will receive the same grade on each part of the project unless a problem 
arises, in which case you should contact your TA as soon as possible. 

3 



­o <outname> Write output to <outname> 

­target <stage> <stage> is one of scan, parse, inter, or assem­
bly. Compilation should proceed to the given 
stage. 

­opt [optimization...] Perform the listed optimizations. 
all stands for all supported optimizations. 
­<optimization> removes optimizations 
from the list. 

­debug Print debugging information. If this option is 
not given, there should be no output to the 
screen on successful compilation. 

Table 1: Compiler Command­line Arguments 

What To Hand In 

For each part of the project, you will have to provide us with two things: online sources and 
hardcopy documentation. 

Online Source 

Create a new directory with the project name (e.g., scanner­parser) at the top­level of your group 
locker. Copy all relevant source files to this directory. You are required to provide a Makefile that 
compiles your sources and packages the resulting class files into a java archive (see Handout 4 for 
details on using make). The jar file will used by the TAs to run the various tests. 

Files in your submission directory should not be modified after the deadline for submitting the 
project (5:00 p.m. on the due date). Please consult additional project handouts for phase­specific 
requirements. 

Command­line Interface 

Your compiler should have the following command line interface. 

javac Compiler [option | filename...] 

The command line arguments you must implement are listed in table 1. Exactly one filename 
should be provided, and it should not begin with a ’­’. The filename must not be listed after the 
­opt flag, since it will be assumed to be an optimization. 

The default behavior is to compile as far as the current assignment of the project and produce a 
file with the extension changed based on either the target or ”.out” if the target is unspecified. 

4




By default, no optimizations are performed. The list of optimization names will be provided in the 
optimization assignments. 

We have provided a class, CLI, which is sufficient to implement this interface. It also returns a 
Vector of arguments it did not understand which can be used to add features. The TAs will not 
use any extra features you add for grading. However, you can tell us which, if any, to use for the 
compiler derby. You may wish to provide a ”­O” flag, which turns on the optimizations you like. 

Hardcopy Documentation 

Documentation should be turned in to the course secretary by 5:00 p.m. on the due date. It should 
be clear, concise and readable. Fancy formatting is not necessary; plain text is perfectly acceptable. 
You are welcome to do something more extravagant, but it will not help your grade. 

Your documentation must include the following parts: 

1. A brief description of how your group divided the work. This will not affect your grade; it 
will be used to alert the TAs to any possible problems. 

2. A list of any clarifications, assumptions, or additions to the problem assigned.	 The project 
specifications are fairly broad and leave many of the decisions to you. This is an aspect of 
real software engineering. If you think major clarifications are necessary, consult your TA. 

3. An overview of your design, an analysis of design alternatives you considered, and key design 
decisions. Be sure to document and justify all design decisions you make. Any decision 
accompanied by a convincing argument will be accepted. If you realize there are flaws or 
deficiencies in your design late in the implementation process, discuss those flaws and how 
you would have done things differently. Also include any changes you made to previous parts 
and why they were necessary. 

4. A brief description of interesting implementation issues. This should include any non­trivial 
algorithms, techniques, and data structures. It should also include any insights you discovered 
during this phase of the project. 

5. Only for scanner and parser:	 A listing of commented source code relevant to this part of 
the project. For later stages, the TAs can print out source code if needed. Do not resubmit 
source code from other parts of the project, even if minor changes have been made. 

6. A list of known problems with your project, and as much as you know about the cause. If 
your project fails a provided test case, but you are unable to fix the problem, describe your 
understanding of the problem. If you discover problems in your project in your own testing 
that you are unable to fix, but are not exposed by the provided test cases, describe the 
problem as specifically as possible and as much as you can about its cause. If this causes your 
project to fail hidden test cases, you may still be able to receive some credit for considering 
the problem. If this problem is not revealed by the hidden test cases, then you will not be 
penalized for it. It is to your advantage to describe any known problems with your project; 
of course, it is even better to fix them. 

It is entirely up to you to determine how to test your project. The thoroughness of you testing will 
be reflected in your performance on the hidden test cases. 

5 


