
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.035, Fall 2005 Handout 12 – Low­level Optimizations Monday, November 28 

DUE: Monday, December 12 

In the final phase of the project, you will implement some instruction­level optimizations. You are 
required to implement register allocation. Any remaining optimizations are optional. 

•	 Register Allocation – Your compiler must implement a graph coloring based register allo­
cator. An “always or never” allocator is not adequate, but we do not require you to implement 
web splitting and combining. See Chapter 16 of the Whale book and §9.7 of the Dragon book. 

Your register allocator should take advantage of the full set of x86 general purpose registers, 
not just r10 and r11. It should also respect the caller­save and callee­save properties of this 
register. 

In addition to allocating registers to program variables and temporaries, you must use them 
to pass function arguments as specified in the full calling convention. 

•	 List Scheduling – Instruction scheduling minimizes pipeline stalls for long latency operations 
such as loads, multiplies, and divides. See Chapter 17 of Whale book. 

•	 Instruction Selection – So far, we have been using a very restricted subset of the x86­64’s 
instructions. As a peephole optimization, you might replace a sequence of old instruction 
with a single new one taht does the same thing efficiently. For instance, it is possible to push 
and pop values directly from memory, so no intermediate temporary register is needed. 

See the full AMD64 reference (linked from the abridged version) for details regarding the architec­
ture. To speed­test your code on chocura, use the ­pg option to gcc while compiling in order to 
generalte profiling information, and use gprof to do the actual profiling. 

What to Hand In 

Your compiler must provide the following command line flags: 

•	 ­opt regalloc: turns on register allocation 

•	 ­opt instsel: turn on instruction selection peephole optimizations (optional) 

•	 ­opt sched: turns on list scheduling (optional) 

As in the last assignment, you must provide a ­opt all flag to turn on all optimizations. If you 
choose to implement list scheduling, you will need to think carefully about the order in which your 
optimizations are performed. You may even wish to perform some optimizations twice. 

1




As before, your generated code must perform the runtime checks listed in the language specification. 
These may be optimized (or removed in some cases) as long as they report a runtime error whenever 
the unoptimized program reports an error. 

Follow the instructions in Handout 3 on what to turn in. For the electronic portion, you should 
submit files named leNN­instruction.jar and leNN­instruction.tar.gz. Your written docu­
mentation should present a discussion of how you determined the order in which your optimizations 
are performed. Give clear examples of MIPS excerpts showing what your optimizations do, and 
describe any hacks or solutions to tricky problems. 

Test Cases 

No new test cases have been provided for this segment. However, you should make sure that any 
valid program continues to run successfully. We will test your compiler on a set of hidden test 
cases. Grades will be given based on the effectiveness and correctness of your optimizations. 

2



