
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.035, Fall 2005 Handout 6 — Decaf Language Wednesday, September 7

The project for the course is to write a compiler for a language called Decaf. Decaf is a simple
imperative language similar to C or Pascal.

Lexical Considerations

All Decaf keywords are lowercase. Keywords and identifiers are case­sensitive. For example, if is a
keyword, but IF is a variable name; foo and Foo are two different names referring to two distinct
variables.

The reserved words are:

boolean break callout class continue else false if int return true void while

Note that Program (see below) is not a keyword, but an identifier with a special meaning in
certain circumstances.

Comments are started by // and are terminated by the end of the line.

White space may appear between any lexical tokens. White space is defined as one or more spaces,
tabs, page and line­breaking characters, and comments.

Keywords and identifiers must be separated by white space, or a token that is neither a keyword
nor an identifier. For example, thiswhiletrue is a single identifier, not three distinct keywords. If
a sequence begins with an alphabetic character or an underscore, then it, and the longest sequence
of characters following it forms a token.

String literals are composed of �char�s enclosed in double quotes. A character literal consists of a
�char� enclosed in single quotes.

Numbers in Decaf are 32 bit signed. That is, decimal values between ­2147483648 and 2147483647.
If a sequence begins with 0x, then these first two characters and the longest sequence of characters
drawn from [0­9a­fA­F] form a hexadecimal integer literal. If a sequence begins with a decimal
digit (but not 0x), then the longest prefix of decimal digits forms a decimal integer literal. Note
that range checking is performed later. A long sequence of digits (e.g. 123456789123456789) is still
scanned as a single token.

A �char� is any printable ASCII character (ASCII values between decimal value 32 and 126, or
octal 40 and 176) other than quote ("), single quote (’), or backslash (\), plus the 2­character
sequences “\"” to denote quote, “\’” to denote single quote, “\\” to denote backslash, “\t” to
denote a literal tab, or “\n” to denote newline.

1

� �

� �

�}

� � �� �+ � � | �

� | � �
� � �� +

�

�

| �
| � �

� �

| � � �
�

| � � �

| �

| � �

Reference Grammar

Meta­notation:

�foo� means foo is a nonterminal.
foo (in bold font) means that foo is a terminal

i.e., a token or a part of a token.
x means zero or one occurrence of x, i.e., x is optional;

note that brackets in quotes �[� �]� are terminals.
x∗ means zero or more occurrences of x.
+x , a comma­separated list of one or more x’s.

large braces are used for grouping;
note that braces in quotes �{� � are terminals.

separates alternatives. |

program� → class Program �{� field decl�∗ method decl�∗ �}�

field decl� → �type� id� id� �[� �int literal� �]� , ; �
method decl� → �type� void id� (�type� �id� ,) block�

block� � var decl�∗ statement�∗ �}�� → �{ � �

var decl� → �type� �id� +
, ;

�type� → int | boolean

statement� location� = expr� ;� → � �
method call� ;

if (expr�) block� else �block�
while (� expr�) block�
return expr� ;|
break ;|
continue ;|
block�

method call� method name� (expr� +
,)� → � � � �

callout (�string literal� , callout arg� +
,)

method name� id�� → �

location� id�� → �
id� �[� expr� �]�

2

�
�
�
�
�

! �
�

� |

� | � | � | �

� | � | �

expr�� →
|
|
|
|
|
|

callout arg�� →

bin op�� →

arith op�� →

rel op�� →

eq op�� →

cond op�� →

literal�� →

id�� →

�alpha num� →

�alpha� →

�digit� →

hex digit�� →

int literal�� →

decimal literal�� →

hex literal�� →

bool literal�� →

char literal�� →

�string literal� →

Semantics

location�
method call�
literal�
expr� �bin op� �expr�
­ expr�

expr�
(expr�)

expr� �string literal�

arith op� rel op� eq op� cond op�

+ | ­ * % | << >> | >>>| | / | |

< | > <= | >=|

== !=|

&& | ||

int literal� char literal� bool literal�

∗�alpha� �alpha num�

�alpha� | �digit�

a | b | ... | z | A | B | ... | Z | | .

0 | 1 | 2 | ... | 9

�digit� | a | b | c | d | e | f | A | B | C | D | E | F

�decimal literal� | �hex literal�

�digit� �digit�∗

0x �hex digit� �hex digit�∗

true | false

’ �char� ’

" �char�∗
"

A Decaf program consists of a single class declaration for a class called Program. The class decla­
ration consists of field declarations and method declarations. Field declarations introduce variables
that can be accessed globally by all methods in the program. Method declarations introduce func­
tions/procedures. The program must contain a declaration for a method called main that has no
parameters. Execution of a Decaf program starts at method main.

3

Types

There are two basic types in Decaf — int and boolean. In addition, there are arrays of integers
(int [N]) and arrays of booleans (boolean [N]).

Arrays may be declared only in the global (class declaration) scope. All arrays are one­dimensional
and have a compile­time fixed size. Arrays are indexed from 0 to N − 1, where N > 0 is the size
of the array. The usual bracket notation is used to index arrays. Since arrays have a compile­time
fixed size and cannot be declared as parameters (or local variables), there is no facility for querying
the length of an array variable in Decaf.

Scope Rules

Decaf has simple and quite restrictive scope rules. All identifiers must be defined (textually) before
use. For example:

a variable must be declared before it is used. •

•	 a method can be called only by code appearing after its header. (Note that recursive methods
are allowed.)

There are at least two valid scopes at any point in a Decaf program: the global scope, and the
method scope. The global scope consists of names of fields and methods introduced in the (single)
Program class declaration. The method scope consists of names of variables and formal parameters
introduced in a method declaration. Additional local scopes exist within each �block� in the code;
these can come after if and while statements, or inserted anywhere a �statement� is legal. An
identifier introduced in a method scope can shadow an identifier from the global scope. Similarly,
identifiers introduced in local scopes shadow identifiers in less deeply nested scopes, the method
scope, and the global scope.

Variable names defined in the method scope or a local scope may shadow method names in the
global scope. In this case, the identifier may only be used as a variable until the variable leaves
scope.

No identifier may be defined more than once in the same scope. Thus field and method names must
all be distinct in the global scope, and local variable names and formal parameters names must be
distinct in each local scope.

Locations

Decaf has two kinds of locations: local/global scalar variables and (global) array elements. Each
location has a type. Locations of types int and boolean contain integer values and boolean values,
respectively. Locations of types int [N] and boolean [N] denote array elements. Since
arrays are statically sized in Decaf, arrays may be allocated in the static data space of a program
and need not be allocated on the heap.

Each location is initialized to a default value when it is declared. Integers have a default value
of zero, and booleans have a default value of false. Local variables must be initialized when the
declaring scope is entered. Array elements are initialized when the program starts.

4

Assignment

Assignment is only permitted for scalar values. For the types int and boolean, Decaf uses value­
copy semantics, and the assignment �location� = �expr� copies the value resulting from the evaluation
of �expr� into �location�. For array types, �location� and �expr� must refer to a single array element
which is also a scalar value.

The �location� and the �expr� in an assignment must have the same type.

It is legal to assign to a formal parameter variable within a method body. Such assignments affect
only the method scope.

Method Invocation and Return

Method invocation involves (1) passing argument values from the caller to the callee, (2) executing
the body of the callee, and (3) returning to the caller, possibly with a result.

Argument passing is defined in terms of assignment: the formal arguments of a method are con­
sidered to be like local variables of the method and are initialized, by assignment, to the values
resulting from the evaluation of the argument expressions. The arguments are evaluated from left
to right.

The body of the callee is then executed by executing the statements of its method body in sequence.

A method that has no declared result type can only be called as a statement, i.e., it cannot be
used in an expression. Such a method returns control to the caller when return is called (no result
expression is allowed) or when the textual end of the callee is reached.

A method that returns a result may be called as part of an expression, in which case the result of
the call is the result of evaluating the expression in the return statement when this statement is
reached. It is illegal for control to reach the textual end of a method that returns a result.

A method that returns a result may also be called as a statement. In this case, the result is ignored.

Control Statements

The if statement has the usual semantics. First, the �expr� is evaluated. If the result is true, the
true arm is executed. Otherwise, the else arm is executed, if it exists. Since Decaf requires that
the true and else arms be enclosed in braces, there is no ambiguity in matching an else arm with
its corresponding if statement.

The while statement has the usual semantics. First, the �expr� is evaluated. If the result is false,
control exits the loop. Otherwise, the loop body is executed. If control reaches the end of the loop
body, the while statement is executed again.

Similarly, break and continue have their usual meaning: break exits the innermost enclosing
loop, resuming execution at the next statement; continue branches to the beginning of the body
of the innermost enclosing loop and re­evaluates the condition.

5

Expressions

Expressions follow the normal rules for evaluation. In the absence of other constraints, operators
with the same precedence are evaluated from left to right. Parentheses may be used to override
normal precedence.

A location expression evaluates to the value contained by the location.

Method invocation expressions are discussed in Method Invocation and Return. Array operations
are discussed in Types. I/O related expressions are discussed in Library Callouts.

Integer literals evaluate to their integer value. Character literals evaluate to their integer ASCII
values, e.g., ’A’ represents the integer 65. (The type of a character literal is int.)

The arithmetic operators (�arith op� and unary minus) have their usual precedence and meaning,
as do the relational operators (�rel op�). % computes the remainder of dividing its operands. The
<< is a left shift and the >> is an arithmetic right shift. The >>> is a right bitwise rotation.

Relational operators are used to compare integer expressions. The equality operators, == and !=
are defined for int and boolean types only, can be used to compare any two expressions having
the same type. (== is “equal” and != is “not equal”).

The result of a relational operator or equality operator has type boolean.

The boolean connectives && and || are interpreted using short circuit evaluation as in Java. The
side­effects of the second operand are not executed if the result of the first operand determines the
value of the whole expression (i.e., if the result is false for && or true for ||).

Operator precedence, from highest to lowest:

Operators Comments
­ unary minus
! logical not

* / % multiplication, division, remainder
+ ­ addition, subtraction

<< >> >>> shifts
< <= >= > relational
== != equality
&& conditional and
|| conditional or

Note that this precedence is not reflected in the reference grammar.

Library Callouts

Decaf includes a primitive method for calling functions provided in the runtime system, such as the
standard C library or user­defined functions.

The primitive method for calling functions is:

6

� �
+int callout (�string literal�, �callout arg� ,) — the function named by the initial

string literal is called and the arguments supplied are passed to it. Expressions of
boolean or integer type are passed as integers; string literals or expressions with array
type are passed as pointers. The return value of the function is passed back as an
integer. The user of callout is responsible for ensuring that the arguments given match
the signature of the function, and that the return value is only used if the underlying
library function actually returns a value of appropriate type. Arguments are passed to
the function in the system’s standard calling convention.

In addition to accessing the standard C library using callout, an I/O function can be written in
C (or any other language), compiled using standard tools, linked with the runtime system, and
accessed by the callout mechanism.

Semantic Rules

These rules place additional constraints on the set of valid Decaf programs besides the constraints
implied by the grammar. A program that is grammatically well­formed and does not violate any
of the following rules is called a legal program. A robust compiler will explicitly check each of
these rules, and will generate an error message describing each violation it is able to find. A robust
compiler will generate at least one error message for each illegal program, but will generate no
errors for a legal program.

1. No identifier is declared twice in the same scope.

2. No identifier is used before it is declared.

3. The program contains a definition for a method called main that has no parameters (note
that since execution starts at method main, any methods defined after main will never be
executed).

4. The �int literal� in an array declaration must be greater than 0.

5. The number and types of arguments in a method call must be the same as the number and
types of the formals i.e., the signatures must be identical.

6. If a method call is used as an expression, the method must return a result.

7. A return statement must not have a return value unless it appears in the body of a method
that is declared to return a value.

8. The expression in a return statement must have the same type as the declared result type
of the enclosing method definition.

9. An �id� used as a �location� must name a declared local/global variable or formal parameter.

10. For all locations of the form �id�[�expr�]

(a) �id� must be an array variable, and

(b) the type of �expr� must be int.

7

11. The �expr� in if and while statements must have type boolean.

12. The operands of �arith op�s and �rel op�s must have type int.

13. The operands of �eq op�s must have the same type, either int or boolean.

14. The operands of �cond op�s and the operand of logical not (!) must have type boolean.

15. The �location� and the �expr� in an assignment, �location� = �expr�, must have the same type.

16. All break and continue statements must be contained within the body of a loop.

Run Time Checking

In addition to the constraints described above, which are statically enforced by the compiler’s
semantic checker, the following constraints are enforced dynamically: the compiler’s code generator
must be emit code to perform these checks; violations are discovered at run­time.

1. The subscript of an array must be in bounds.

2. Control must not fall off the end of a method that is declared to return a result.

When a run­time error occurs, an appropriate error message is output to the terminal and the
program terminates. Such error messages should be helpful to the programmer trying to find the
problem in the source program.

8

