
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.035, Fall 2005 Handout 9 — Code Generation Project Monday, October 10 

DUE: Tuesday, October 31 

Code Generation involves producing correct x86­64 assembler code for all Decaf programs. The 
next two project assignments will involve code optimizations. For now, we’re not interested in 
whether your generated code is efficient. 

By the end of code generation, you should have a fully working Decaf compiler. You’ll be able to 
write, compile, and execute real programs! 

Project Assignment 

For CG (Code Generation), your compiler will translate your IR tree into x86­64 assembly code 
to be run under Linux on an AMD64­based computer. For a given input file containing a Decaf 
program, your compiler must generate an assembly language listing (�filename�.s). 

Your code must include instructions to perform the runtime checks listed in Handout 6. Additional 
checks such as integer overflow are not required. You may have implemented runtime checks for IR 
generation. If not, it needs to be done by the end of CG. 

The two later assignments, Dataflow optimizations and Instruction optimizations, will focus on 
improving the efficiency of the target code generated by your compiler. For this assignment, you 
will use a “two­register” form for all arithmetic and logical operations. This means that you will 
store all variables on the stack, and will use registers only as temporary storage. 

You are not constrained as to how you go about generating your final assembly code listing. How­
ever, we suggest that you follow the general approach presented in lecture. 

You will have a number of opportunities to do some creative design work for the code optimization 
projects. For this first assignment, you should focus your creative energies on your machine­code 
representations of the run­time structures and (possibly) of the procedure call / return sequences 
presented in lecture. Do not try to produce an improved register allocation scheme; you will be 
addressing these issues later. 

System Usage 

You will develop your compiler on Athena or your own computer, perhaps using your group 
locker as a shared repository. Your group also has an account on the x86­64 test machine. 

Once you generate an assembly output file, say @output.s@, you need to copy it to your group’s 
space on the , assemble and link it using @gcc@, and run it: 

1 



athena% scp output.s <test machine>: 
athena% ssh <test machine> 
<test machine>'s password: 
­bash­3.00$ ls 
output.s 
­bash­3.00$ gcc output.s <library directory>.s ­o output 
­bash­3.00$ ./output 
Hello, world! 
­bash­3.00$ logout 
Connection to <test machine> closed. 
athena% 

What to Hand In 

As always, follow the directions given in Handout 3 when writing the hardcopy documentation for 
your project. The electronic portion of the hand­in procedure should also be familiar: Provide a 
gzipped tar file named leNN­codegen.tar.gz in your group locker, where NN is your group number. 
This file should contain all relevant source code and a Makefile. Also provide a Java archive named 
leNN­codegen.jar. 

Unpacking the tar file and running make should produce the same Java archive. With the CLASSPATH 
set appropriately, you should be able to run your compiler from the command line with one of the 
following: 

java Compiler <filename> 
java Compiler <filename> ­target assembly 

Your compiler should write an x86­64 assembly listing to a file of the same name with a .s extension. 

Nothing should be written to standard out or standard error for a syntactically and semantically 
correct program unless the ­debug flag is present. If the ­debug flag is present, your compiler 
should still run and produce the same resulting assembly listing. 

Test Cases 

We will run your compilers on the revealed test cases on the course server, 
and on a set of hidden tests. 

Related Handouts 

The X86­64 Architecture Guide, provided as a supplement to this handout, describes the restricted 
view that we will take of the x86­64 architecture for the purposes of this project. You must read this 
handout before you start to write the code that traverses your IR and generates x86­64 instructions. 

2



