
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.035, Fall 2005 Handout 10 — Practice Quiz 2 Friday, November 11

1. Name That Optimization

For the basic block:

a = 1

b = 2

c = 3

d = a + x

e = b + c

f = e

g = f

g = d + y

a = b + c

State for each of the basic blocks on the following page which optimization was performed on
the above:

• Constant Propagation/Folding

• Copy Propagation

• Common Subexpression Elimination

• Dead Code Elimination.

1

(a) a = 1

b = 2

c = 3

d = a + x

e = b + c

f = e

g = d + y

a = b + c

(b) a = 1

b = 2

c = 3

d = a + x

e = b + c

t1 = e

f = e

g = f

g = d + y

a = t1

(c) a = 1

b = 2

c = 3

d = 1 + x

e = 5

f = 5

g = 5

g = d + y

a = 5

(d) a = 1

b = 2

c = 3

d = a + x

e = b + c

f = e

g = e

g = d + y

a = b + c

2

2. Dead Variable Analysis

Dead Variable Analysis determines, for each program point, the set of variables whose values
are no longer needed by the computation enclosed within a given control flow graph. A
variable is dead if there are no further uses of the variable before it is reassigned a new value.
You may assume all variables are local and therefore dead at exit from the CFG.

(a) Is Dead Variable Analysis a forward or backward dataflow problem?

(b) What do the members of the IN and OUT sets represent? What does it mean for a set
member to be a zero or one?

(c) What are the initialization conditions? (The initial values of IN or OUT where appro­
priate)

(d) What is the confluence operator?

(e) What are the GEN and KILL sets for the basic blocks in Figure 1?

GEN KILL

B1

B2

B3

B4

B5

B6

3

3. Fixed Points

You are on a deadline. The first release of FrobozzCo. Inc’s compiler, FlatheadCC, is due out
next week. Fortunately for him, Ben Bitdiddle somehow managed to get this week off (the
Flatheads never were very good managers) and is sunning himself in Hawaii. Unfortunately
for you, his code to build the control flow graph for a procedure is having some problems.
Occasionally, you discover an edge which is dangling; you know where the edge comes from
but you can’t tell which basic block it is supposed to point to.

?

.....

.....

.....

.....
.....
.....

.....

.....

How would you adapt the following procedure for Reaching Definition analysis to compensate
for this problem? You may assume that only one such edge exists in any particular CFG. Note
that the following procedure takes the node from which the edge is dangling as a parameter.
This parameter is called dangle. You may also assume that a preprocessing stage has modified
the predecessors and successors functions to ignore the dangling edge.

4

// N is the set of nodes in the control flow graph

// E is the set of edges in the control flow graph

// Entry is the entry node of the control flow graph

// Exit is the exit node of the control flow graph

// D is the set of definitions in the control flow graph

// gen[n] is the set of definitions that the node n generates

// kill[n] is the set of definitions that the node n kills

// predecessors[n] is the set of predecessors of the node n in the

// control flow graph

// successors[n] is the set of successors of the node n in the

// control flow graph

// dangle is the node with dangling outgoing edge

ReachingDefinitions(N,E,Entry,Exit,D,gen,kill,predecessors,successors,dangle)

// in[n] is the set of definitions that reach the point before

// the execution of the node n

// out[n] is the set of definitions that reach the point after

// the execution of the node n

in[Entry] = emptyset;

out[Entry] = gen[Entry];

for all nodes n in N - { Entry }

out[n] = emptyset; // Can also set out[n] = gen[n];

Changed = N - { Entry };

while (Changed != emptyset)

choose a node n in Changed;

Changed = Changed - { n };

in[n] = emptyset;

for all nodes p in predecessors(n)

in[n] = in[n] U out[p];

oldout = out[n];

out[n] = gen[n] U (in[n] - kill[n]);

if (oldout != out[n])

for all nodes s in successors(n)

Changed = Changed U { s };

5

4. Global Dataflow and Code Hoisting

An expression e is said to be very busy at a program point p if no matter what path is taken
from p, the expression e will be evaluated before any of its operands are defined. Furthermore:

•	 It is a reverse dataflow analysis.

•	 The members of the bit sets represent the possibly busy expressions.

•	 The OUT sets should be initialized to all zeroes.

•	 The confluence/meet operator is intersection.

•	 The GEN and KILL sets for Figure 1 are as follows if you assign the expressions to bits
in the following order: (a + b), (c − a), (b ∗ d), (e + 1), and (a − d).

GEN

B1 00000

B2 10000

B3 00100

B4 10010

B5 11000

B6 00100

KILL

11101

01101

00101

00111

10110

11101

Perform global very busy expression analysis on Figure 1. What are the final values of IN for
each block once the analysis is complete?

IN

B1

B2

B3

B4

B5

B6

6

Entry

(1

(2

(3

(4

(5

(8

(9

(6

(7

(10

(11

Exit

B1:
) a = 1

) b = 2

B2:
) c = a + b

) d = c - a

B3:) d = b * d

B5:
) b = a + b

) e = c - a

B4:
) d = a + b

) e = e + 1
B6:

) a = b * d

) b = a - d

Figure 1: A procedure CFG

7

