
6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

6.034 Notes: Section 9.1 

Slide 9.1.1 
What is a logic? A logic is a formal language. And what does that mean? It has a syntax and a 
semantics, and a way of manipulating expressions in the language. We'll talk about each of these in 
turn. 

Slide 9.1.2 
The syntax is a description of what you're allowed to write down; what the expressions are that are 
legal in a language. We'll define the syntax of a propositional logic in complete detail later in this 
section. 

Slide 9.1.3 
The semantics is a story about what the syntactic expressions mean. Syntax is form and semantics is 
content. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.4 
A logic usually comes with a proof system, which is a way of manipulating syntactic expressions to 
get other syntactic expressions. And, why are we interested in manipulating syntactic expressions? The 
idea is that if we use a proof system with the right kinds of properties, then the new syntactic 
expressions we create will have semantics or meanings that tell us something "new" about the world. 

Slide 9.1.5 
So, why would we want to do proofs? There are lots of situations. 

Slide 9.1.6 
In the context of an agent trying to reason about its world, think about a situation where we have a 
bunch of percepts. Let's say we saw somebody come in with a dripping umbrella, we saw muddy 
tracks in the hallway, we see that there's not much light coming in the windows, we hear pitter-pitter-
patter. We have all these percepts, and we'd like to draw some conclusion from them, meaning that 
we'd like to figure out something about what's going on in the world. We'd like to take all these 
percepts together and draw some conclusion about the world. We could use logic to do that. 

Slide 9.1.7 
Another use of logic is when you know something about the current state of the world and you know 
something about the effects of an action that you're considering doing. You wonder what will happen 
if you take that action. You have a formal description of what that action does in the world. You might 
want to take those things together and infer something about the next state of the world. So these are 
two kinds of inferences that an agent might want to do. We could come up with a lot of other ones, but 
those are two good examples to keep in mind. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.8 
We'll look at two kinds of logic: propositional logic, which is relatively simple, and first-order logic, 
which is more complicated. We're just going to dive right into propositional logic, learn something 
about how that works, and then try to generalize later on. We'll start by talking about the syntax of 
propositional logic. Syntax is what you're allowed to write on your paper. 

Slide 9.1.9 
You're all used to rules of syntax from programming languages, right? In Java you can write a for 
loop. There are rules of syntax given by a formal grammar. They tell you there has to be a semicolon 
after fizz; that the parentheses have to match, and so on. You can't make random changes to the 
characters in your program and expect the compiler to be able to interpret it. So, the syntax is what 
symbols you're allowed to write down in what order. Not what they mean, not what computation they 
symbolize, but just what symbols you can write down. 

Slide 9.1.10 
Another famous illustration of syntax is this one, due to the linguist Noam Chomsky: "Colorless green 
ideas sleep furiously". The idea is that it doesn't mean anything really, but it's syntactically well-
formed. It's got the nouns, the verbs, and the adjectives in the right places. If you scrambled the words 
up, you wouldn't get a sentence, right? You'd just get a string of words that didn't obey the rules of 
syntax. So, "furiously ideas green sleep colorless" is not syntactically okay. 

Slide 9.1.11 
Let's define the syntax of propositional logic. We'll call the legal things to write down "sentences". So 
if something is a sentence, it is a syntactically okay thing in our language. Sometimes sentences are 
called "WFFs" (which stands for "well-formed formulas") in other books. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.12 
We're going to define the set of legal sentences recursively. So here are two base cases: The words, 
"true" and "false", are sentences. 

Slide 9.1.13 
Propositional variables are sentences. I'll give you some examples. P, Q, R, Z. We're not, for right 
now, defining a language that a computer is going to read. And so we don't have to be absolutely 
rigorous about what characters are allowed in the name of a variable. But there are going to be things 
called variables, and we'll just use uppercase letters for them. Those are sentences. It's OK to say "P" --
that's a sentence. 

Slide 9.1.14 
Now, here's the recursive part. If Phi and Psi are sentences, then so are -- Wait! What, exactly, are Phi 
and Psi? They're called metavariables, and they range over expressions. This rule says that if Phi and 
Psi are things that you already know are sentences because of one of these rules, then you can make 
more sentences out of them. Phi with parentheses around it is a sentence. Not Phi is a sentence (that 
little bent thing is our "not" symbol (but we're not really supposed to know that yet, because we're just 
doing syntax right now)). Phi "vee" Psi is a sentence. Phi "wedge" Psi is a sentence. Phi "arrow" Psi is 
a sentence. Phi "two-headed arrow" Psi is a sentence. 

Slide 9.1.15 
And there's one more part of the definition, which says nothing else is a sentence. OK. That's the 
syntax of the language. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.16 
There's actually one more issue we have to sort out. Precedence of the operations. If we were being 
really careful, we'd require you to put parentheses around each new sentence that you made out of 
component sentences using negation, vee, wedge, or arrow. But it starts getting kind of ugly if we do 
that. So, we allow you to leave out some of the parentheses, but then we need rules to figure out where 
the implicit parentheses really are. Those are precedence rules. Just as in arithmetic, where we learned 
that multiplication binds tighter than addition, we have similar rules in logic. So, to add the 
parentheses to a sentence, you start with the highest precedence operator, which is negation. For every 
negation, you'd add an open paren in front of the negation sign and a close parenthesis after the next 
whole expression. This is exactly how minus behaves in arithmetic. The next highest operator is 
wedge, which behaves like multiplication in arithmetic. Next is vee, which behaves like addition in 
arithmetic. Logic has two more operators, with weaker precedence. Next comes single arrow, and last 
is double arrow. Also, wedge and vee are associative. 

6.034 Notes: Section 9.2 

Slide 9.2.1 
Let's talk about semantics. The semantics of a sentence is its meaning. What does it say about the 
world? We could just write symbols on the board and play with them all day long, and it could be 
fun; it could be like doing puzzles. But ultimately the reason that we want to be doing something 
with these kinds of logical sentences is because they somehow say something about the world. And 
it's really important to be clear about the connections between the things that we write on the board 
and what we think of them as meaning in the world, what they stand for. And it's going to be 
something different every day. I remember once when I was a little kid, I was on the school bus. And 
somebody's big sister or brother had started taking algebra and this kid told me, "You know what? 
My big sister's taking algebra and A equals 3!" The reason that sounds so silly is that A is a variable. 
Our variables are going to be the same. They'll have different interpretations in different situations. 
So, in our study of logic, we're not going to assign particular values or meanings to the variables; 
rather, we're going to study the general properties of symbols and their potential meanings. 

Slide 9.2.2 
Ultimately, the meaning of every sentence, in a situation, will be a truth value, t or f. Just as, in high-
school algebra, the meaning of every expression is a numeric value. Note that there's already a really 
important difference between underlined true and false, which are syntactic entities that we can write 
on the board, and the truth values t and f which stand for the abstract philosophical ideals of truth and 
falsity. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.3 
How can we decide whether A "wedge" B "wedge" C is true or not? Well, it has to do with what A and 
B and C stand for in the world. What A and B and C stand for in the world will be given by an object 
called an "interpretation". An interpretation is an assignment of truth values to the propositional 
variables. You can think of it as a possible way the world could be. So if our set of variables is P, Q, R, 
and V, then P true, Q false, R true, V true, that would be an interpretation. So then, given an 
interpretation, we can ask the question, is this sentence true in that interpretation? We will write "holds 
Phi comma i" to mean "sentence Phi is true in interpretation i". The "holds" symbol is not part of our 
language. It's part of the way logicians write things on the board when they're talking about what 
they're doing. This is a really important distinction. If you can think of our sentences like expressions 
in a programming language, then you can think of these expressions with "holds" as being about 
whether programs work in a certain way or not. In order to even think about whether Phi is true in 
interpretation I, Phi has to be a sentence. If it's not a well-formed sentence, then it doesn't even make 
sense to ask whether it's true or false. 

Slide 9.2.4 
Similarly, we'll use "fails" to say that a sentence is not true in an interpretation. And since the meaning 
of every sentence is a truth value and there are only two truth values, then if a sentence Phi is not true 
(does not have the truth value t) in an interpretation, then it has truth value f in that interpretation and 
we'll say it's false in that interpretation. 

Slide 9.2.5 
So now we can write down the rules of the semantics. We can write down rules that specify when 
sentence Phi is true in interpretation i. We are going to specify the semantics of sentences recursively, 
based on their syntax. The definition of a semantics should look familiar to most of you, since it's very 
much like the specification of an evaluator for a functional programming language, such as Scheme. 

Slide 9.2.6 
First, the sentence consisting of the symbol "true" is true in all interpretations. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.7 
The sentence consisting of a symbol "false" has truth value f in all interpretations. 

Slide 9.2.8 
Now we can do the connectives. We'll leave out the parentheses. The truth value of a sentence with 
top-level parentheses is the same as the truth value of the sentence with the parentheses removed. 
Now, let's think about the "not" sign. When is "not" Phi true in an interpretation i? Whenever Phi is 
false in that interpretation. 

Slide 9.2.9 
When is Phi "wedge" Psi true in an interpretation i? Whenever both Phi and Psi are true in i. This is 
called "conjunction". And we'll start calling that symbol "and" instead of "wedge", now that we know 
what it means. 

Slide 9.2.10 
When is Phi "vee" Psi true in an interpretation i? Whenever either Phi or Psi is true in i. This is called 
"disjuction", and we'll call the "vee" symbol "or". It is not an exclusive or; so that if both Phi and Psi 
are true in i, then Phi "vee" Psi is also true in i. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.11 
Now we have one more clause in our definition. I'm going to do it by example. Imagine that we have a 
sentence P. P is one of our propositional variables. How do we know whether it is true in interpretation 
i? Well, since i is a mapping from variables to truth values, I can simply look P up in i and return 
whatever truth value was assigned to P by i. 

Slide 9.2.12 
It seems like we left out the arrows in the semantic definitions of the previous slide. But the arrows are 
not strictly necessary; that is, it's going to turn out that you can say anything you want to without them, 
but they're a convenient shorthand. (In fact, you can also do without either "or" or "and", but we'll see 
that later). 

Slide 9.2.13 
So, we can define Phi "arrow" Psi as being equivalent to not Phi or Psi. That is, no matter what Phi and 
Psi are, and in every interpretation, (Phi "arrow" Psi) will have the same truth value as (not Phi or Psi). 
We will now call this arrow relationship "implication". We'll say that Phi implies Psi. We may also 
call this a conditional expression: Psi is true if Phi is true. In such a statement, Phi is referred to as the 
antecedent and Psi as the consequent. 

Slide 9.2.14 
Finally, the double arrow just means that we have single arrows going both ways. This is sometimes 
called a "bi-conditional" or "equivalence" statement. It means that in every interpretation, Phi and Psi 
have the same truth value. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.15 
Just so you can see how all of these operators work, here are the truth tables. Consider a world with 
two propositional variables, P and Q. There are four possible interpretations in such a world (one for 
every combination of assignments to the variables; in general, in a world with n variables, there will be 
2^n possible interpretations). Each row of the truth table corresponds to a possible interpretation, and 
we've filled in the values it assigns to P and Q in the first two columns. Once we have chosen an 
interpretation (a row in the table), then the semantic rules tell us exactly what the truth value of every 
single legal sentence must be. Here we show the truth values for six different sentences made up from 
P and Q. 

Slide 9.2.16 
Most of them are fairly obvious, but it's worth studying the truth table for implication fairly closely. In 
particular, note that (P implies Q) is true whenever P is false. You can see that this is reasonable by 
thinking about an English sentence like "If pigs can fly then ...". Once you start with a false condition, 
you can finish with anything, and the sentence will be true. Implication doesn't mean "causes". It 
doesn't mean "is related" in any kind of real-world way; it is just a bare, formal definition of not P or 
Q. 

Slide 9.2.17 
Now we'll define some terminology on this slide and the next, then do a lot of examples. 

Slide 9.2.18 
A sentence is valid if and only if it is true in all interpretations. We have already seen one example of 
a valid sentence. What was it? True. Another one is "not false". A more interesting one is "P or not P". 
No matter what truth value is assigned to P by the interpretation, "P or not P" is true. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.19 
A sentence is satisfiable if and only if it's true in at least one interpretation. The sentence P is 
satisfiable. The sentence True is satisfiable. Not P is satisfiable. 

Slide 9.2.20 
A sentence is unsatisfiable if and only if it's false in every interpretation. Some unsatisfiable sentences 
are: false, not true, P and not P. 

Slide 9.2.21 
We can use the method of truth tables to check these things. If I wanted to know whether a particular 
sentence was valid, or if I wanted to know if it was satisfiable or unsatisfiable, I could just make a 
truth table. I'd write down all the interpretations, figure out the value of the sentence in each 
interpretation, and if they're all true, it's valid. If they're all false, it's unsatisfiable. If it's somewhere in 
between, it's satisfiable. So there's a reliable way; there's a completely dopey, tedious, mechanical way 
to figure out if a sentence is has one of these properties. That's not true in all logics. This is a useful, 
special property of propositional logic. It might take you a lot of time, but it's a finite amount of time 
and you can decide any of these questions. 

Slide 9.2.22 
Let's work through some examples. We can think about whether they're valid or unsatisfiable or 
satisfiable. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.23 
What about "smoke implies smoke"? Rather than doing a whole truth table it might be easier if we can 
convert it into smoke or not smoke, right? The definition of A implies B is not A or B. And we said 
that smoke or not smoke was valid already. 

Slide 9.2.24 
What about "smoke implies fire"? It's satisfiable, because there's an interpretation of these two 
symbols that makes it true. There are other interpretations that make it false. I should say, everything 
that's valid is also satisfiable. 

Slide 9.2.25 
Here is a form of reasoning that you hear people do a lot, but the question is, is it okay? "Smoke 
implies fire implies not smoke implies not fire." It's invalid. We could show that by drawing out the 
truth table (and you should do it as an exercise if the answer is not obvious to you). Another way to 
show that a sentence is not valid is to give an interpretation that makes the sentence have the truth 
value f. In this case, if we give "smoke" the truth value f and and "fire" the truth value t, then the 
whole sentence has truth value f. 

Slide 9.2.26 
Reasoning in the other direction is okay, though. So the sentence "smoke implies fire implies not fire 
implies not smoke" is valid. And for those of you who love terminology, this thing is called the 
contrapositive. So, if there's no fire, then there's no smoke. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.27 
What about "b or d or (b implies d)"? We can rewrite that (using the definition of implication) into "b 
or d or not b or d", which is valid, because in every interpretation either b or not b must be true. 

Slide 9.2.28 
The problem of deciding whether a sentence is satisfiable is related to constraint satisfaction: you have 
to find an interpetation i such that the sentence holds in that interpretation. That's analogous to finding 
an assignment of values to variables so that the constraints are satisfied. 

Slide 9.2.29 
We could try to solve these problems using the brute-force method of enumerating all possible 
interpretations, then looking for one that makes the sentence true. 

Slide 9.2.30 
Better would be to use methods from constraint satisfaction. There are a number of search algorithms 
that have been specially adapted to solving satisfiability problems as quickly as possible, using 
combinations of backtracking, constraint propagation, and variable ordering. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.31 
There are lots of satisfiability problems in the real world. They end up being expressed essentially as 
lists of boolean logic expressions, where you're trying to find some assignment of values to variables 
that makes the sentence true. 

Slide 9.2.32 
One example is scheduling nurses to work shifts in a hospital. Different people have different 
constraints, some don't want to work at night, no individual can work more than this many hours out of 
that many hours, these two people don't want to be on the same shift, you have to have at least this 
many per shift and so on. So you can often describe a setting like that as a bunch of constraints on a set 
of variables. 

Slide 9.2.33 
There's an interesting application of satisfiability that's going on here at MIT in the Lab for Computer 
Science. Professor Daniel Jackson's interested in trying to find bugs in programs. That's a good thing 
to do, but (as you know!) it's hard for humans to do reliably, so he wants to get the computer to do it 
automatically. 

One way to do it is to essentially make a small example instance of a program. So an example of a 
kind of program that he might want to try to find a bug in would be an air traffic controller. The air 
traffic controller has rules that specify how it works. So you could write down the logical specification 
of how the air traffic control protocol works, and then you could write down another sentence that 
says, "and there are two airplanes on the same runway at the same time." And then you could see if 
there is a satisfying assignment; whether there is a configuration of airplanes and things that actually 
satisfies the specifications of the air traffic control protocol and also has two airplanes on the same 
runway at the same time. And if you can find one -- if that whole sentence is satisfiable, then you have 
a problem in your air traffic control protocol. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

6.034 Notes: Section 9.3 

Slide 9.3.1 
One reason for writing down logical descriptions of situations is that they will allow us to draw 
conclusions about other aspects of the situation we've described. 

Slide 9.3.2 
Imagine that we knew the following things to be true: If today is sunny, Tomas will be happy; if 
Tomas is happy, the lecture will be good; and today is sunny. 

Does this mean that the lecture will be good? 

Slide 9.3.3 
One way to think about this is to start by figuring out what set of interpretations make our original 
sentences true. Then, if G is true in all those interpretations, it must be okay to conclude it from the 
sentences we started out with (sometimes called our knowledge base). 

Slide 9.3.4 
In a universe with only three variables, there are 8 possible interpretations in total. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.5 
Only one of these interpretations makes all the sentences in our knowledge base true: S = true, H = 
true, G = true. 

Slide 9.3.6 
And it's easy enough to check that G is true in that interpretation, so it seems like it must be reasonable 
to draw the conclusion that the lecture will be good. (Good thing!). 

Slide 9.3.7 
If we added another variable to our domain, say whether Leslie is happy (L), then we'd have two 
interpretations that satisfy the KB: S = true, H = true, G = true, L = true; and S = true, H = true, G = 
true, L = false. 

G is true in both of these interpretations, so, again, if the KB is true, then G must also be true. 

Slide 9.3.8 
There is a general idea called "entailment" that signifies a relationship between a knowledge base and 
another sentence. If whenever the KB is true, the conclusion has to be true (that is, if every 
interpretation that satisfies the KB also satisfies the conclusion), we'll say that the KB "entails" the 
conclusion. You can think of entailment as something like "follows from", or "it's okay to conclude 
from". 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.9 
The method of enumerating all the interpretations that satisfy the KB, and then checking to see if the 
conclusion is true in all of them is a correct way to test entailment. 

Slide 9.3.10 
But now, what if we were to add 6 more propositional variables to our domain? Then we'd have 2^10 
= 1024 interpretations to check, which is way too much work to do (and, in the first order case, we'll 
find that we might have infinitely many intepretations, which is definitely too much work to 
enumerate!!). 

Slide 9.3.11 
So what we'd really like is a way to figure out whether a KB entails a conclusion without enumerating 
all of the possible interpretations. 

A proof is a way to test whether a KB entails a sentence, without enumerating all possible 
interpretations. You can think of it as a kind of shortcut arrow that works directly with the syntactic 
representations of the KB and the conclusion, without going into the semantic world of interpretations. 

Slide 9.3.12 
So what is a proof system? Well, presumably all of you have studied high-school geometry; that's 
often people's only exposure to formal proof. Remember that? You knew some things about the sides 
and angles of two triangles and then you applied the side-angle-side theorem to conclude -- at least 
people in American high schools were familiar with side-angle-side -- The side-angle-side theorem 
allowed you to conclude that the two triangles were similar, right? 

That is formal proof. You've got some set of rules that you can apply. You've got some things written 
down on your page, and you grind through, applying the rules that you have to the things that are 
written down, to write some more stuff down until finally you've written down the things that you 
wanted to, and then you get to declare victory. That's a proof. There are (at least) two styles of proof 
system; we're going to talk about one briefly here and then go on to the other one at some length in the 
next two sections. 

Natural deduction refers to a set of proof systems that are very similar to the kind of system you used 
in high-school geometry. We'll talk a little bit about natural deduction just to give you a flavor of how 
it goes in propositional logic, but it's going to turn out that it's not very good as a general strategy for 
computers. It's a proof system that humans like, and then we'll talk about a proof system that 
computers like, to the extent that computers can like anything. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.13 
A proof is a sequence of sentences. This is going to be true in almost all proof systems. 

Slide 9.3.14 
First we'll list the premises. These are the sentences in your knowledge base. The things that you know 
to start out with. You're allowed to write those down on your page. Sometimes they're called the 
"givens." You can put the givens down. 

Slide 9.3.15 
Then, you can write down on a new line of your proof the results of applying an inference rule to the 
previous lines. 

Slide 9.3.16 
Then, when a sentence S is on some line, you have proved S from KB. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.17 
If your inference rules are sound, then any S you can prove from KB is, in fact, entailed by KB. That 
is, it's legitimate to draw the conclusion S from the assumptions in KB. 

Slide 9.3.18 
If your rules are complete, then you can use KB to prove any S that is entailed by the KB. That is, you 
can prove any legitimate conclusion. 

Wouldn't it be great if you were sound and complete derivers of answers to problems? You'd always 
get an answer and it would always be right! 

Slide 9.3.19 
So let's look at inference rules, and learn how they work by example. We'll look at natural-deduction 
rules first, because they're easiest to understand. 

Slide 9.3.20 
Here's a famous one (first written down by Aristotle); it has the great Latin name, "modus ponens", 
which means "affirming method". 

It says that if you have "Alpha implies Beta" written down somewhere on your page, and you have 
Alpha written down somewhere on your page, then you can write beta down on a new line. (Alpha and 
Beta here are metavariables, like Phi and Psi, ranging over whole complicated sentences). It's 
important to remember that inference rules are just about ink on paper, or bits on your computer 
screen. They're not about anything in the world. Proof is just about writing stuff on a page, just syntax. 
But if you're careful in your proof rules and they're all sound, then at the end when you have some bit 
of syntax written down on your page, you can go back via the interpretation to some semantics. So you 
start out by writing down some facts about the world formally as your knowledge base. You do stuff 
with ink and paper for a while and now you have some other symbols written down on your page. You 
can go look them up in the world and say, "Oh, I see. That's what they mean." 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.21 
Here's another inference rule. "Modus tollens" (denying method) says that, from "alpha implies beta" 
and "not beta" you can conclude "not alpha". 

Slide 9.3.22 
And-introduction say that from "Alpha" and from "Beta" you can conclude "Alpha and Beta". That 
seems pretty obvious. 

Slide 9.3.23 
Conversely, and-elimination says that from "Alpha and Beta" you can conclude "Alpha". 

Slide 9.3.24 
Now let's do a sample proof just to get the idea of how it works. Pretend you're back in high school 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.25 
We'll start with 3 sentences in our knowledge base, and we'll write them on the first three lines of our 
proof: (P and Q), (P implies R), and (Q and R imply S). 

Slide 9.3.26 
From line 1, using the and-elimination rule, we can conclude P, and write it down on line 4 (together 
with a reminder of how we derived it). 

Slide 9.3.27 
From lines 4 and 2, using modus ponens, we can conclude R. 

Slide 9.3.28 
From line 1, we can use and-elimination to get Q. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.29 
From lines 5 and 6, we can use and-introduction to get (Q and R). 

Slide 9.3.30 
Finally, from lines 7 and 3, we can use modus ponens to get S. Whew! We did it! 

Slide 9.3.31 
The process of formal proof seems pretty mechanical. So why can't computers do it? 

They can. For natural deduction systems, there are a lot of "proof checkers", in which you tell the 
system what conclusion it should try to draw from what premises. They're always sound, but nowhere 
near complete. You typically have to ask them to do the proof in baby steps, if you're trying to prove 
anything at all interesting. 

Slide 9.3.32 
Part of the problem is that they have a lot of inference rules, which introduces a very big branching 
factor in the search for proofs. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.33 
Another big problem is the need to do "proof by cases". What if you wanted to prove R from (P or Q), 
(Q implies R), and (P implies R)? You have to do it by first assuming that P is true and proving R, then 
assuming Q is true and proving R. And then finally applying a rule that allows you to conclude that R 
follows no matter what. This kind of proof by cases introduces another large amount of branching in 
the space. 

Slide 9.3.34 
An alternative is resolution, a single inference rule that is sound and complete, all by itself. It's not 
very intuitive for humans to use, but it's great for computers. 

Resolution requires all sentences to be first written in a special form. So the next section will 
investigate that special form, and then we'll return to resolution. 

6.034 Notes: Section 9.4 

Slide 9.4.1 
Now we're going to start talking about first-order logic, which extends propositional logic so that we 
can talk about things. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.2 
In propositional logic, all we had were variables that stood, not for things in the world or even 
quantities, but just facts, Boolean statements that might or might not be true about the world, like 
whether it's raining, or greater than 67 degrees; but you couldn't have variables that stood for tables or 
books, or the temperature, or anything like that. And as it turns out, that's an enormously limiting kind 
of representation. 

Slide 9.4.3 
In first-order logic, variables refer to things in the world and you can quantify over them. That is, you 
can talk about all or some of them without having to name them explicitly. 

Slide 9.4.4 
There are lots of examples that show how propositional logic is inadequate to characterize even 
moderately complex domains. Here are some more examples of the kinds of things that you can say in 
first-order logic, but not in propositional logic. 

Slide 9.4.5 
"When you paint the block, it becomes green." You might have a proposition for every single aspect of 
the situation, like "if this block is black and I paint it, it becomes green" and "if that block is red and I 
paint it, it becomes green" and "if block #5 is green and I paint it, it becomes green". But you'd have to 
have one of those propositions for every single initial block color, or every single block, or every 
single object (if you have non-blocks, too) in the world. You couldn't say that, as a general fact, "after 
you paint something if becomes green." 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.6 
Let's say you want to talk about what happens when you sterilize a jar. It kills all the bacteria in the jar. 
Now, you don't want to have to name all the bacteria; to have to say, bacterium 57 is dead, and 
bacterium 93 is dead. Each one of those guys is dead. All the bacteria are dead now. So you'd like to 
have a way not only to talk about things in the world, but to talk about all of them, or some of them, 
without naming any of them explicitly. 

Slide 9.4.7 
In the context of providing flexible computer security, you might want to prove or try to understand 
whether someone should be allowed access to a web site. And you could say: a person should have 
access to this web site if they've been personally, formally authorized to use this web site or if they are 
known to someone who has access to the web site. So you could write a general rule that says that and 
then some other system or this system could try to prove that you should have access to the web site. 
In this case, what that would mean would be going to look for a chain of people that are authorized or 
known to one another that bottoms out in somebody who's known to this web site. 

Slide 9.4.8 
First-order logic lets us talk about things in the world. It's a logic like propositional logic, but 
somewhat richer and more complex. We'll go through the material in the same way that we did 
propositional logic: we'll start with syntax and semantics, and then do some practice with writing 
down statements in first-order logic. 

Slide 9.4.9 
The big difference between propositional logic and first-order logic is that we can talk about things, 
and so there's a new kind of syntactic element called a term. And the term, as we'll see when we do the 
semantics, is a name for a thing. It's an expression that somehow names a thing in the world. There are 
three kinds of terms: 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.10 
There are constant symbols. They are names like Fred or Japan or Bacterium39. Those are symbols 
that, in the context of an interpretation, name a particular thing. 

Slide 9.4.11 
Then there are variables, which are not really syntactically differentiated from constant symbols. We'll 
use capital letters to start constant symbols (think of them as proper names), and lower-case letters for 
term variables. (It's important to note, though, that this convention is not standard, and in some logic 
contexts, such as the programming language Prolog, they adopt the exact opposite convention). 

Slide 9.4.12 
The last kind of term is a function symbol, applied to one or more terms. We'll use lower-case for 
function symbols as well. So another way to make a name for something is to say something like f(x). 
If f is a function, you can give it a term and then f(x) names something. So, you might have mother-of 
(John) or f(f(x)). Note that a function with no terms would be a constant. 

These three kinds of terms are our ways to name things in the world. 

Slide 9.4.13 
In propositional logic we had sentences. Now, in first-order logic it's a little bit more complicated, but 
not a lot. So what's a sentence? There's another kind of symbol called a predicate symbol. A predicate 
symbol is applied to zero or more terms. Predicate symbols stand for relations, so we might have 
things like On(A,B) or Sister(Jane, Joan). On and Sister are predicate symbols; a, b, Jane, Joan, 
and mother-of(John) are terms. 

A predicate applied to zero terms is what's sometimes called a sentential variable or a propositional 
variable. It was our old kind of variable that we had before in propositional logic, like "it's-raining." 
It's a little bit of an artifice, but we'll take predicates with no arguments to be variables that have values 
true or false. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.14

A sentence can also be of the form t1 = t2. We're going to have one special predicate called equality. 


You can say this thing equals that thing, written term, equal-sign, term. 


Slide 9.4.15 
There are two more new constructs. If v is a variable and Phi is a sentence then (upside-down-A v . 
phi), and (backwards-E v . phi) are sentences. You've probably seen these symbols before informally 
as "for all" and "there exists", and that's what they're going to mean for us, too. 

Slide 9.4.16 
Finally we have closure under the sentential operators that we had before, so you can make complex 
sentences out of other sentences using and, or, not, implies, equivalence (also called biconditional), 
and parentheses, just as before in propositional logic. All that basic connective structure is still the 
same, but the things that we can say on either side have gotten a little bit more complicated. 

All right, that's our syntax. That's what we get to write down on our page. 


