
6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

6.034 Notes: Section 8.1 

Slide 8.1.1 
There is no easy way to characterize which particular separator the perceptron algorithm will end up 
with. In general, there can be many separators for a data set. Even in the tightly constrained 
bankruptcy data set, we saw two runs of the algorithm with different starting points ended up with 
slightly different hypotheses. Is there any reason to prefer one separator over the others? 

Slide 8.1.2 
Yes. One natural choice is to pick the separator that has the maximal margin to its closest points on 
either side. This is the separator that seems most conservative. Any other separator will be "closer" to 
one class than to the other. The one shown in this figure, for example, seems like it's closer to the 
black points on the lower left than to the red ones. 

Slide 8.1.3 
This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 
"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the 
data result in a very different hypothesis. With a maximal margin separator, we can wiggle the data 
quite a bit without affecting the separator. Placing the separator very close to positive or negative 
points is a kind of overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this 
picture. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.1.4 
First we have to define what we are trying to optimize. Clearly we want to use our old definition of 
margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation 
instead of w bar, because we will end up giving b special treatment in the future. 

Slide 8.1.5 
Remember that any scaling of w and b defines the same line; but it will result in different values of 
gamma. To get the actual geometric distance from the point to the separator (called the geometric 
margin), we need to divide gamma through by the magnitude of w. 

Slide 8.1.6 
The next issue is that the we have defined the margin for a point relative to a separator but we don't 
want to just maximize the margin of some particular single point. We want to focus on one point on 
each side of the separator, each of which is closest to the separator. And we want to place the separator 
so that the it is as far from these two points as possible. Then we will have the maximal margin 
between the two classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for 
each of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude 
of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 
what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 

Slide 8.1.7 
Having chosen these margins, we can add the two equations to get that the projection of the weight 
vector on the difference between the two chosen data points has magnitude 2. This is obvious from the 
setup, but it's nice to see it follows. 

Then, we divide through by the magnitude of the weight vector and we have a simple expression for 
the margin, simply 2 over the magnitude of w. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.1.8 
So, we want to pick w to maximize the geometric margin, that is, to maximize 2 over the magnitude of 
w. To maximize this expression, we want to minimize the magnitude of w. If we minimize 1/2 the 
magnitude squared that is completely equivalent in effect but simpler analytically. 

Of course, this is not enough, since we could simply pick w = 0 which would be completely useless. 

Slide 8.1.9 
We'd like to find the w that specifies the maximum margin separator. To be a separator, w needs to 
classify the points correctly. So, we'll maximize the margin, subject to a set of constraints that require 
the points to be classified correctly. We will require each point in the training set to have a margin 
greater than or equal to 1. Requiring the margins to be positive will ensure that they are classified 
correctly. Requiring them to be greater than or equal to 1 will ensure that the margin of the closest 
points wil be greater than or equal to 1. The fact that we are minimizing the magnitude of w will force 
the margins to be as small as possible, so that in fact the margins of the closest points will equal 1. 

Slide 8.1.10 
So, to summarize, we have defined a constrained optimization problem as shown here. It involves 
minimizing a quadratic function subject to a set of linear constraints. These kinds of optimization 
problems are very well studied. When the function to be minimized is linear, it is a particularly easy 
case that can be solved by a "linear programming" algorithm. In our case, it's a bit more complicated. 

Slide 8.1.8 
The standard approach to solving this type of problem is to convert it to an unconstrained optimization 
problem by incorporating the constraints as additional terms in the function to be minimized. Each of 
the constraints is multiplied by a weighting term alphai. Think of these terms as penalty terms that will 

penalize values of w that do not satisfy the constraints. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.1.12 
To minimize the combined expression we want to minimize the first term (the magnitude of the weight 
vector squared) but we want to maximize the constraint term since it is negated. Since alphai > 0, 

making the constraint terms bigger encourages them to be satisfied (we want the margins to be bigger 
than 1). 

However, the bigger the constraint term, the farther we move from the original minimal value of w. In 
general we want to minimize this "distortion" of the original problem. We want to introduce just 
enough distortion to satisfy the constraints. We'll look at this in more detail momentarily. 

Slide 8.1.13 
This method we have begun to outline here is called the method of Lagrange multipliers and the 
alphai are the individual Lagrange multipliers. 

6.034 Notes: Section 8.2 

Slide 8.2.1 
The details of solving a Lagrange multiplier problem are a little bit complicated. But we are going to 
go through the derivation at a somewhat abstract level here, because it gives us some insights and 
intuitions about the resulting solution. 

We have an expression, L(w,b), that also involves parameters alpha. If we knew what the values of 
alpha should be, we could just fix them, minimize L with respect to w and b, and be done. The big 
problem is that we don't know what the alphas are supposed to be. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.2.2 
So, we're going to start by imagining that we know what we want the alphas to be. We'll hold them 
constant for now, and figure out what values of w and b would optimize L for those fixed alphas. We 
can do this by taking the partial derivatives of L with respect to w and b and setting them to zero, 
getting two constraints. We find that the best value of w, w* is a weighted sum of the input points (in 
the same form as the dual perceptron); and we get an extra constraint that the sum of the alphas for the 
positive points has to equal the sum of the alphas for the negative points. 

Slide 8.2.3 
We can substitute this expression for the optimal w's back into our original expression for L, getting L 
as a function of alpha. Now we have an expression involving only alphas, which we don't know, and 
x's and y's, which we do know. This function is known as the dual Lagrangian. One of the most 
important things about it, from our perspective, is that the feature vectors only appear in dot products 
with other feature vectors. We'll come back to this point later on. 

Slide 8.2.4 
Now, it's time to pick the best values for the alphas. We do so (for reasons that you'll have to learn in a 
math class) by choosing the alpha values that maximize this expression. We will retain the constraints 
that the sum of the alpha values for positive points is equal to the sum of the alpha values for negative 
points, and that the alphas must be positive. 

Note that we will be solving for m alphas. We started with n+1 (the number of features, plus one) 
variables in the original Lagrangian and now we have m (the number of data points) variables in the 
dual Lagrangian. For the low-dimensional examples we have been dealing with this seems like a 
horrible tradeoff. We will see later that this can be a very good tradeoff in some circumstances. 

We have two constraints, but they are much simpler. One constraint is simply that the alphas be non-
negative---this is required because our original constraints were >= inequalities. The constraint on the 
alphas comes from the setting to zero the derivative of the Lagrangian with respect to the offset b. 

This problem is not trivial to solve in general; we'll talk more about this later. For now, let us assume 
that we can solve it and get the optimal values of alphas. 

Slide 8.2.5 
In the solution, most of the alphas will be zero, corresponding to data points that do not provide 
binding constraints on the choice of the weights. A few of the data points will have their alphas be 
nonzero; they will all satisfy their constraints with equality (that is, their margin is equal to 1). These 
are called support vectors and they are the ones used to define the maximum margin separator. You 
could remove all the other data points and still get the same separator. Because the sparsity of support 
vectors is so important, this learning method is called a support vector machine, or SVM. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.2.6 
Given the optimal alphas, we can compute the weights. but this time, the coefficients in the sum are 
the Lagrange multipliers, the alphas, which are mostly zero. This means that the equation of the 
maximum margin separator depends only on the handful of data points that are closest to it. It makes 
sense that all the rest of the points would be irrelevant. 

We can use the fact that at the support vectors the constraints hold with equality to solve for the value 
of the offset b. Each such constraint can be used to solve for this scalar. 

Slide 8.2.7 
We have not discussed actual algorithms for finding the maxima of the dual Lagrangian. It turns out 
that the optimization problem we defined is a relatively simple form of the general class of quadratic 
programming problems, which are known to (a) have a unique maximum and (b) can be found using 
existing algorithms. A number of variations on these algorithms exist but they are beyond our scope. 

Slide 8.2.8 

With the values of the optimal alphai's and b in hand, and the knowledge of how w is defined, we now 

have a classifier that we can use on unknown points. Crucially, notice that once again, the only thing 
we care about are the dot products of the unknown vector with the data points. 

Slide 8.2.9 
Here's the result of running a quadratic programming algorithm to find the maximal margin separator 
for the bankruptcy example. Note that only four points have non-zero alpha's. They are the closest 
points to the line and are the ones that actually define the line. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.2.10 

Let's highlight once again a few of the key points about SVM training and classification. First and 
foremost, and at the risk of repeating myself, recall that the training and classification of SVMs 
depends only on the value of the dot products of data vectors. That is, if we have a way of getting the 
dot products, the computation does not otherwise depend explicitly on the dimensionality of the 
feature space. 

Slide 8.2.8 

The fact that we only need dot products (as we will see next) means that we will be able to substitute 
more general functions for the traditional dot product operation to get more powerful classifiers 
without really changing anything in the actual training and classification procedures. 

Slide 8.2.12 

Another point to remember is that the resulting classifier does not (in general) depend on all the 
training points but only on the ones "near the margin", that is, those that help define the boundary 
between the two classes. 

Slide 8.2.13 

The maximum margin constraint helps reduce the variance of the SVM hypotheses. Insisting on a 
minimum magnitude weight vector drastically cuts down on the size of the hypothesis class and helps 
avoid overfitting. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.2.14 

Finally, we should keep firmly in mind that the SVM training process guarantees a unique global 
maximum. And it runs in time polynomial in the number of data points and the dimensionality of the 
data. 

6.034 Notes: Section 8.3 

Slide 8.3.1 

Thus far, we have only been talking about the linearly separable case. What happens for the case in 
which we have a "nearly separable" problem? That is, some "noise points" that are bound to be 
misclassified by a linear separator. 

It is useful to think about the behavior of the dual perceptron on this type of problem. In that 
algorithm, the value of the alphai for a point is incremented proportionally to its distance to the 

separator. In fact, if the point is classified correctly, no change is made to the multiplier. We can see 
that if point i stubbornly resists being classified, then the value of alphai will continue to grow 

without bounds. 

The alpha's in the dual perceptron are analogous to the values of the Lagrange multipliers in the 
SVM. In both cases, the separator is defined as a linear combination of the input points, with the 
alphas being the weights. 

So, one strategy for dealing with these noise points in an SVM is to limit the maximal value of any 
of the alphai's (the Lagrange multipliers) to some C. And, furthermore, to ignore the points with this 

maximal value when computing the margin. Clearly, if we ignore enough points, we can always get 
back to a linearly separable problem. By choosing a large value of C, we will work very hard at correctly classifying all the points, a low value of C will allow us to give up more 
easily on many of the points so as to achieve a better margin. 

Slide 8.3.2 
This simple example shows how changing C causes the geometric margin to change. High values of C 
penalize misclassifications more. Low values may permit misclassifications to achieve better margin. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.3 

Here is an example of a separator on a simple data set with four points, which are linearly separable. 
The colors show the result returned by the classification function on each point in the space. Gray 
means near 1 or -1. The more intense the blue, the more positive the result; the more intense the red, 
the more negative. Points lying between the two gray lines return values between -1 and +1. 

Note that only three of the four samples are actually used to define w, the ones circled. The other plus 
sample might as well not be there; its coefficient alpha is zero. 

The samples that are actually used are the support vectors. 

Slide 8.3.4 

The next example is the same as the previous example, but with the addition of another plus sample in 
the lower left corner. There are several points of interest. 

First, the optimization has failed to find a separating line, as indicated by the minus sample surrounded 
by a red disk. The alphas were bounded and so the contribution of this misclassified point is limited 
and the algorithm converges to a global optimum. 

Second, the added point produced quite a different solution. The algorithm is looking for best possible 
dividing line; a tradeoff between margin and classification error defined by C. If we had kept a 
solution close to the one in the previous slide, the rogue plus point would have been misclassified by a 
lot, while with this solution we have reduced the misclassification margin substantially. 

Slide 8.3.5 

However, even if we provide a mechanism for ignoring noise points, aren't we really limited by a 
linear classifier? Well, yes. 

However, in many cases, if we transform the feature values in a non-linear way, we can transform a 
problem that was not linearly separable into one that is. This example, shows that we can create a 
circular separator by finding a linear classifier in a feature space defined by the squares of the original 
feature values. That is, we can obtain a non-linear classifier in the original space by finding a linear 
classifier in a transformed space. 

Hold that thought. 

Slide 8.3.6 

Furthermore, when training samples are not separable in the original space they may be separable if 
you perform a transformation into a higher dimensional space, especially one that is a non-linear 
transformation of the input space. 

For the example shown here, in the original feature space, the samples all lie in a plane, and are not 
separable by a straight line. In the new space, the samples lie in a three dimensional space, and happen 
to be separable by a plane. 

The heuristic of moving to a higher dimensional space is general, and does not depend on using 
SVMs. 

However, we will see that the support vector approach lends itself to movement into higher 
dimensional spaces because of the exclusive dependence of the support vector approach on dot 
products for learning and subsequent classification. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.7 

First, suppose there is a function, phi, that puts the vectors into another, higher-dimensional space, 
which will also typically involve a non-linear mapping of the feature values. In general, the higher the 
dimensionality, the more likely there will be a separating hyperplane. 

By moving to a higher-dimensional feature space, we are also moving to a bigger hypothesis class, and 
so we might be worried about overfitting. However, because we are finding the maximum margin 
separator, the danger of overfitting is greatly reduced. 

Slide 8.3.8 
Even if we aren't in danger of overfitting, there might be computational problems if we move into 
higher dimensional spaces. In real applications, we might want to move to orders of magnitude more 
features, or even (in some sense) infinitely many features! We'll need a clever trick to manage this... 

You have learned that to work in any space with the support vector approach, you will need (only) the 
dot products of the samples to train and you will need the dot products of the samples with unknowns 
to classify. 

Note that you don't need anything else. So, all we need is a way of computing the dot product between 
the transformed feature vectors. 

Slide 8.3.9 

Let's assume that we have a function that allows us to compute the dot products of the transformed 
vectors in a way that depends only on the original feature vectors and not directly on the transformed 
vectors. We will call this the kernel function. (This usage of the term "kernel" is related to kernel 
functions we saw in regression; they are both about measuring effective distances between points in 
different spaces.) 

Then you do not need to know how to do the transformations themselves! This is why the support-
vector approach is so appealing. The actual transformations may be computationally intractable, or 
you may not even know how to do the transformations at all, but you can still learn and classify 
without ever moving explicitly up into the high-dimensional space. 

Slide 8.3.10 
So now we need to find some phis (mappings from low to high-dimensional space) that have a 
convenient kernel function associated with them. The simplest case is one where phi is the identity 
function and K is just the dot product. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.8 
One such other kernel function is the dot product raised to a power; the actual power is a parameter of 
the learning algorithm that determines the properties of the solution. 

Slide 8.3.12 

Let's look at a simple example of using a polynomial kernel. Consider the one dimensional problem 
shown here, which is clearly not separable. Let's map it into a higher dimensional feature space using 
the polynomial kernel of second degree (n=2). 

Slide 8.3.13 

Note that a second degree polynomial kernel is equivalent to mapping the single feature value x to a 
three dimensional space with feature values x2, sqrt(2)x, and 1. You can see that the dot product of two 
of these feature vectors is exactly the value computed by the polynomial kernel function. 

If we plot the original points in the transformed feature space (using just the first two features), we see 
in fact that the two classes are linearly separable. Clearly, the third feature value (equal to 1) will be 
irrelevant in finding a separator. 

The important aspect of all of this is that we can find and use such a separator without ever explicitly 
computing the transformed feature vectors - only the kernel function values are required. 

Slide 8.3.14 

Here is a similar transformation for a two dimensional feature vector. Note that the dimension of the 
transformed feature vector is now 6. In general, the dimension of the transformed feature vector will 
grow very rapidly with the dimension of the input vector and the degree of the polynomial. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.15 

Let's look at the behavior of these non-linear kernels. 

The decision surface produced by the non-linear kernels is curved. Here is an example for which the 
(unsuccessful) attempt on the left is with a simple dot product; the attempt on the right is done with a 
polynomial kernel of degree 3. Note the curve in the solution, and note that four of the samples have 
become support vectors. 

Generally, the higher-dimensional the transformed space, the more complex the separator is in the 
original space, and the more support vectors will be required to specify it. 

Slide 8.3.16 
Another popular kernel function is an exponential of the square of the distance between vectors, 
divided by sigma squared. This is the formula for a Gaussian bump in the feature space, where sigma 
is the standard deviation of the Gaussian. Sigma is a parameter of the learning that determines the 
properties of the solution. 

Slide 8.3.17 

You can get a curved separator if you use radial basis functions, which give us a classifier that is a sum 
of the values of several Gaussian functions. 

Let's pause a minute to observe something that should strike you as a bit weird. When we used the 
polynomial kernels, we could see that each input feature vector was being mapped into a higher-
dimensional, possibly very high dimensional, feature vector. With the radial-basis kernel each input 
feature vector is being mapped into a function that is defined over the whole feature space! In fact, 
each input feature point is being mapped into a point in an infinite-dimensional feature space (known 
as a Hilbert space). We then build the classifier as sum of these functions. Whew! 

The actual operation of the process is less mysterious than this "infinite-dimensional" mapping view, 
as we will see by a very simple example. 

Slide 8.3.18 
Along the bottom you see that we're dealing with the simple one-dimensional example that we looked 
at earlier using a polynomial kernel. The blue points are possitive and the pinkish purple ones are 
negative. Clearly this arrangement is not linearly separable. 

K(xi,u) can be seen as a "Gaussian bump"; that is, as a function with a maximum at u = xi, that 
decreases monotonically with the distance between u and xi, but is always positive and goes to 0 at 
infinite distance. The parameter sigma specifies how high the bump is and how fast it falls off (the 
area under the curve of each bump is 1, no matter what the value of sigma is). The smaller the sigma, 
the more sharply peaked the bump. 

With a radial-basis kernel, we will be looking for a set of multipliers for Gaussian bumps with the 
specified sigma (here it is 0.1) so that the sum of these bumps (plus an offset) will give us a 
classification function that's positive where the positive points are and negative where the negative 
points are. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.19 
Here is the solution obtained from an SVM quadratic optimization algorithm. Note that four points are 
support vectors, as expected, the points near where the decision boundary has to be. The farther 
positive points receive alpha=0. The value of the offset, b is also shown. 

The blue and pink Gaussian bumps correspond to copies of a Gaussian with standard deviation of 0.1 
scaled by the corresponding alpha values. 

Slide 8.3.20 
The black line corresponds to the sum of the four bumps (and the offset). The important point is to 
notice where this line crosses zero since that's the decision surface (in one dimension). Notice that, as 
required, it succeeds in separating the positive from the negative points. 

Slide 8.3.21 
Here we see a separator for our simple five point example computed using radial basis kernels. The 
solution on the left, for reference, is the original dot product. The solution on the right is for a radial 
basis function with a sigma of one. Note that all the points are now support vectors. 

Slide 8.3.22 

If a space is truly convoluted, you can always cover it with a radial basis solution with small-enough 
sigma. In extreme cases, like this one, each of the four plus and four minus samples has become a 
support vector, each specialized to the small part of the total space in its vicinity. This is basically 
similar to 1-nearest neighbor and is just as powerful and subject to overfitting. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.23 

At this point alarm bells may be ringing. By creating these very high dimensional feature vectors, are 
we just setting ourselves up for severe overfitting? Intuitively, the more parameters we have the better 
we can fit the input, but that may not lead to better performance on new data. 

It turns out that the fact that the SVM decision surface depends only on the support vectors and not 
directly on the dimensionality of the space comes to our rescue. 

Slide 8.3.24 

We can estimate the error on new data by computing the cross-validation error on the training data. If 
we look at the linearly separable case, it is easy to see that the expected value of leave-one-out cross-
validation error is bounded by the proportion of support vectors. 

If we take a data point that is not a support vector from the training set, the computation of the 
separator will not be affected and so it will be classified correctly. If we take a support vector out, then 
the classifier will in general change and there may be an error. So, the expected generalization error 
depends on the number of support vectors and not on the dimension. 

Note that using a radial basis kernel with very small sigma gives you a high expected number of 
support vectors and therefore a high expected cross-validation error, as expected. Yet, a radial basis 
kernel with large sigma, although of similar dimensionality, has fewer expected support vectors and is 
likely to generalize better. 

We shouldn't take this bound too seriously; it is not actually very predictive of generalization 
performance in practice but it does point out an important property of SVMs - that generalization 
performance is more related to expected number of support vectors than to dimensionality of the 
transformed feature space. 

Slide 8.3.25 

So, let's summarize the SVM story. One key point is that SVMs have a training method that guarantees 
a unique global optimum. This eliminate many headaches in other approaches to machine learning. 

Slide 8.3.26 

The other advantage of SVMs is that there are relatively few parameters to be chosen: C, the constant 
used to trade off classification error and width of the margin; and the kernel parameter, such as sigma 
in the radial basis kernel. 

These can both be continuous parameters and so there still remains a search requiring some form of 
validation, but these are few parameters compared to some of the other methods. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.3.27 

And, last but not least, is the kernel trick. That is, that the whole process depends only on the dot 
products of the feature vectors, which is the key to the generalization to non-linear classifiers. 

Slide 8.3.28 
The linear separator is very simple hypothesis class but it can perform very well on appropriate data 
sets. On the Wisconsin breast cancer data, the maximal margin classifier, with a linear kernel, does as 
well or better as any of the other classifiers we have seen on held-out data. Note that only 37 of the 
512 training points are support vectors. 

Slide 8.3.29 
SVMs have proved useful in a wide variety of applications, particularly those with large numbers of 
features, such as image and text recognition problems. They are the method of choice in text 
classification problems, such as categorization of news articles by topic, or spam detection, because 
they can work in a huge feature space (typically with a linear kernel) without too much fear of 
overfitting. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

6.034 Notes: Section 8.4 

Slide 8.4.1 
In many machine-learning applications, there are huge numbers of features. In text classification, 
you often have as many features as there are words in the dictionary. Gene expression arrays have 
five to fifty thousand elements. Images can have as many as 512 by 512 pixels. 

Slide 8.4.2 
When there are lots of features in a domain, it can make some machine learning algorithms run much 
too slowly. Worse, it often causes overfitting problems: most classifiers have a complexity related to 
the number of features, and in many of these cases we can have many more features than training 
examples, which doesn't give us much confidence in our parameter estimates. 

Slide 8.4.3 
There are two approaches to dealing with very large feature spaces: one is to select a subset of the 
given set of features to work with; the other is to make new features that are supposed to describe the 
input space more efficiently than the given set of features. 

Slide 8.4.4 
The simplest feature-selection strategy is to compute some score for each feature, and then select the k 
features with the highest rankings. 

A popular feature score is the correlation between a feature and the output variable. It measures the 
degree to which a feature varies with the output, and is usable when the output is discrete or 
continuous. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.5 
We computed the correlations of each of the features in the heart disease data set with the output. They 
are shown here in sorted order, with reference to the decision tree we learned on this data. 

We can see that most of the features used in the tree show up among the top features, ranked according 
to correlation. You can see the features with a positive correlation score indicate that heart disease is 
more likely, and those with a negative score indicate that it is less likely. 

Slide 8.4.6 
Here's a similar figure for the auto fuel efficiency data. It's interesting to see that the highest-
correlation feature is binary choice about whether there are 4 cylinders. It looks like binary features 
have a tendency to be preferred (since the output is binary, as well, and so they often match up 
perfectly). But displacement is also very highly ranked, and probably contains more information than 
the number of cylinders. 

Slide 8.4.7 
As usual, XOR will cause us trouble if we do scoring of single features. In an XOR problem, each 
feature will, individually, have a correlation of 0 with the output. 

To solve xor problems, we need to look at groups of features together. 

Slide 8.4.8 
Ideally, we'd like to try all possible subsets of the features and see which one works best. We can 
evaluate a subset of features by training a classifier using just that subset, and then measuring the 
performance using training set or cross-validation error. 

Instead of trying all subsets, we'll consider greedy methods that add or subtract features one at a time. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.9 
In the forward selection method, we start with no features at all in our feature set. Then, for each 
feature, we consider adding it to the feature set: we add it, train a classifier, and see how well it 
performs (on a separate validation set or by using cross-validation). We then add the feature that 
generated the best classifier to our existing set and continue. 

We'll terminate the algorithm when we have as many features as we can handle, or when the error has 
quit decreasing. 

Slide 8.4.10 
Decision trees work sort of like this: they add features one at a time, choosing the next feature in the 
context of the ones already chosen. However, they establish a whole tree of feature-selection contexts. 

Slide 8.4.11 
Even if we do forward selection, XOR can cause us trouble. Because we only consider adding features 
one by one, neither of the features will look particularly attractive individually, and so we would be 
unlikely to add them until the very end. 

Slide 8.4.12 
Backward elimination works in the other direction. It starts with all the features in the feature set and 
eliminates them one by one, removing the one that results in the best classifier at each step. 

This strategy can cope effectively with XOR-like problems. But it might be impractical if the initial 
feature set is so large that it makes the algorithm to slow to run. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.13 
Here's a plot of the cross-validation accuracy against number of features chosen by forward selection 
on the auto data. The classifier we used was nearest neighbor. 

Here we can see that adding features improves cross-validation accuracy until the last couple of 
features. If there were a large number of relatively noisy features, adding them would make the 
performance go down even further, as they would give the classifier further opportunity for overfitting. 

Slide 8.4.14 
The picture for backward elimination is similar. But notice that it seems to work a bit better, even 
when we are eliminating a lot of features. This may be because it can decide which features to 
eliminate in the context of all the other features. Forward selection, especially in the early phases, 
picks features without much context. 

Slide 8.4.15 
On the heart data, we need about 8 features before we're getting reasonably good performance. The 
accuracies are pretty erratic after that; it's probably an indication of overall variance in the 
performance estimates. 

Slide 8.4.16 
We can see similar performance with backward elimination. It's possible to get rid of a lot of features 
before performance suffers dramatically. And, it really seems to be worthwhile to eliminate some of 
the features, from a performance perspective. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.17 
Backward elimination and forward selection can be computationally quite expensive, because they 
require you, on each iteration, to train approximately as many classifiers as you have features. 

In some classifiers, such as linear support-vector machines and linear neural networks, it's possible to 
do backward elimination more efficiently. You train the classifier once, and then remove the feature 
that has the smallest input weight. 

These methods can be extended to non-linear SVMs and neural networks, but it gets somewhat more 
complicated there. 

Slide 8.4.18 
Another whole strategy for feature selection is to make new features. One very drastic method is to try 
to cluster all of the inputs in your data set into a relatively small number of groups, and then learn a 
mapping from each group into an output. 

Slide 8.4.19 
So, in this case, we might divide the input points into 4 clusters. The stars indicate the cluster centers. 

Slide 8.4.20 
Then, for each cluster, we would assign the majority class. Now, to predict the value of a new point, 
we would see which region it would land in, and predict the associated class. 

This is different from nearest neighbors in that we actually discard all the data except the cluster 
centers. This has the advantage of increasing interpretability, since the cluster centers represent 
"typical" inputs. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.21 
So, what makes a good clustering? There are lots and lots of different technical choices. The basic idea 
is usually that you want to have clusters in which the distance between points in the same group is 
small and the distance between points in different groups is large. 

Clustering, like nearest neighbor, requires a distance metric, and the results you get are as scale-
sensitive as they are in nearest-neighbor. 

Slide 8.4.22 
One of the simplest and most popular clustering methods is K-means clustering. It tries to minimize 
the sum, over all the clusters, of the variance of the points within the cluster (the distances of the 
points to the geometric center of the cluster). 

Unfortunately, it only manages to get to a local optimum of this measure, but it's usually fairly 
reasonable. 

Slide 8.4.23 
Here is the code for the k-means clustering algorithm. You start by choosing k, your desired number of 
clusters. Then, you can randomly choose k of your data points to serve as the initial cluster centers. 

Slide 8.4.24 
Then, we enter a loop with two steps. The first step is to divide the data up into k classes, using the 
cluster centers to make a Voronoi partition of the data. That is, we assign each data point to the cluster 
center that it's closest to. 

Now, for each new cluster, we compute a new cluster center by averaging the elements that were 
assigned to that cluster on the previous step. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.25 
We stop when the centers quit moving. This process is guaranteed to terminate. 

Slide 8.4.26 
One possible problem is that cluster centers can become "orphaned". That is, they no longer have any 
points in them (or perhaps just a single point). A standard method for dealing with this problem is 
simply to randomly re-initialize that cluster center. 

Slide 8.4.27 
Here's a running example simulation of the k-means algorithm. We start with this set of input points. 

Slide 8.4.28 
And randomly pick 4 of them to be our cluster centers. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.29 
Now we partition the data, assigning each point to the center to which it is closest. 

Slide 8.4.30 
We move each center to the mean of the points that belong to it. 

Slide 8.4.31 
Having moved the means, we can now do a new reassignment of points. 

Slide 8.4.32 
And recompute the centers. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.33 
Here we reassign one more point to the green cluster, 

Slide 8.4.34 
Which causes the green and blue centers to move a bit. At this point, the red and yellow clusters are 
stable. 

Slide 8.4.35 
Now two more points get reassigned to green, 

Slide 8.4.36 
And we recompute the centers, to get a clustering that is stable, and will not change under further 
iterations. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.37 
The k-means algorithm takes a real-valued input space and generates a one-dimensional discrete 
description of the inputs. In principal components analysis, we take a real-valued space, and represent 
the data in a new multi-dimensional real-valued space with lower dimensionality. The new coordinates 
are linear combinations of the originals. 

Slide 8.4.38 
The idea is that even if your data are described using a large number of dimensions, they may lie in a 
lower-dimensional subspace of the original space. So, in this figure, the data are described with two 
dimensions, but a single dimension that runs diagonally through the data would describe it without 
losing too much information. 

Slide 8.4.39 
It's harder to see in three dimensions, but here's a data set that might be effectively described using 
only two dimensions. 

Slide 8.4.40 
To really understand what's going on in this algorithm, you need to have had linear algebra. We'll just 
give you a "cartoon" idea of how it works. 

We start out by normalizing the data (subtracting the mean and dividing by the standard deviation). 
The new set of coordinates we construct will have its origin at the centroid of the data. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.41 
Now, we find the single line along which the data have the most variance. It's the dimension that, were 
we to project the data onto it, would result in the most "spread" of the data. We'll let this be our first 
principal component. 

Slide 8.4.42 
Now, we project the data down into the n-1 dimensional space that's orthogonal to the line we just 
chose, and repeat. 

Slide 8.4.43 
The result of this process is a new set of orthogonal axes. The first k of them give a lower-dimensional 
space that represents the variability of the data as well as possible. 

Slide 8.4.44 
If you have some experience with linear algebra, then I can tell you that what we really do is find the 
eigenvectors of the covariance matrix with the k largest eigenvalues. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.45 
One problem with PCA (as it's called by its friends) is that it can only produce a set of coordinates 
that's a linear transformation of the originals. But here's a data set that seems to have a fundamentally 
one-dimensional structure. Unfortunately, we can't express its axis as a linear combination of the 
original ones. There are some other cool dimensionality reduction techniques that can actually find this 
structure! 

Slide 8.4.46 
Another problem with PCA is that it (like k-Means clustering) ignores the classes of the points. So, in 
this example, the principal component is the line that goes between the two classes (it's a great 
separator, but that's not what we're looking for right now). 

Slide 8.4.47 
Now, if we project the data onto that line (which is what would happen if we wanted to reduce the 
dimensionality of our data set to 1), the positive and negative points are completely intermingled, and 
we can never get a separator. 

There are dimensionality-reduction techniques, also, sadly beyond our scope, that try to optimize the 
discriminability of the data rather than its variability, which don't suffer from this problem. 

Slide 8.4.48 
We're just going to tack one additional topic onto the end of this section. It has to do with 
understanding how well a classifier works. So far, we've been thinking about optimizing training error 
or cross-validation error, where "error" is measured as the number of examples we get wrong. Let's 
examine this a little more carefully. 

In a binary classification problem, on a single example, there are 4 possible outcomes, depending on 
the true output value for the input and the predicted output value. In this table, we'll assign values A 
through D to be the number of times each of these outcomes happens on a data set. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.49 
Case B, in which the answer was supposed to be 0 but the classifier predicted 1 is called a "false 
positive" or a type 1 error. 

Slide 8.4.50 
Case C, in which the answer was supposed to be 1 but the classifier predicted 0 is called a "false 
negative" or a type 2 error. 

Slide 8.4.51 
Given these 4 numbers, we can define different characterizations of the classifier's performance. The 
sensitivity is the probability of predicting a 1 when the actual output is 1. This is also called the true 
positive rate, or TP. 

Slide 8.4.52 
The specificity is the probability of predicting a 0 when the actual output is 0. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.53 
The false-alarm rate is the probability of predicting a 1 when the actual output is 0. This is also called 
the false positive rate, or FP. 

Classifiers are usually characterized using sensitivity and specificity, or using TP and FP. 

Slide 8.4.54 
Imagine that you're a physician and you need to predict whether a patient has pseuditis based on the 
results of some blood tests. The disease is often fatal if it's left untreated, and the treatment is cheap 
and relatively side-effect free. 

Slide 8.4.55 
You have two different classifiers that you could use to make the decision. The first has a true-positive 
rate of 0.9 and a false-positive rate of 0.4. That means that it will diagnose the disease in 90 percent of 
the people who actually have it; and also diagnose it in 40 percent of people who don't have it. 

Slide 8.4.56 
The second classifier only has a true-positive rate of 0.7, but a more reasonable false positive rate of 
0.1. 

Given the set-up of the problem, we might choose classifier 1, since all those false positives aren't too 
costly (but if it causes too much hassle, per patient, we might not want to bring 40 percent of them 
back for treatment). 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.57 
One way to address this problem is to start by figuring out the relative costs of the two types of errors. 
Then, for many classifiers, we can build these costs directly into the choice of classification. 

In decision trees, we could use a different splitting criterion. For neural networks we could change the 
error function to be asymmetric. In SVM's, we could use two different values of C. 

Slide 8.4.58 
Often it's useful to deliver a classifier that is tunable. That is, a classifier that has a parameter in it that 
can be used, at application time, to change the trade-offs made between type 1 and type 2 errors. Most 
classifers that have a threshold (such as naive Bayes, neural nets, or SVMs), can be tuned by changing 
the threshold. At different values of the threshold the classifier will tend to make more errors of one 
type versus the other. 

Slide 8.4.59 
In a particular application, we can choose a threshold as follows. 

Let c1 and c2 be the costs of the two different types of errors; let p be the percentage of positive 
examples, let x be the threshold parameter that we are allowed to tune, and let TP(x) and FP(x) be the 
true-positive and false-positive rates, respectively, of the classifier when the threshold is set to have 
value x. 

Then, we can characterize the average, or expected, cost based on this formula, as a function of x. We 
should choose the value of x that will minimize expected cost. 

Slide 8.4.60 
One way to see the overall performance of a tunable classifier is with a ROC curve. ROC stands for 
"receiver operating characteristics" from the days of the invention of radar. 

An ROC curve is plotted on two axes; the x axis is the false positive rate and the y axis is the true 
positive rate. In an ideal world, we would have a false positive rate of 0 and a true positive rate of 1, 
which would put our performance up near the star on this graph. 



6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology. 

Slide 8.4.61 
In reality, as we adjust the parameter in the classifier, we typically go from a situation in which the 
classifier always outputs 0, which generates no false positives and no true positives, to a situation in 
which the classifier always outputs 1, in which case we have both false positive and true positive rates 
of 1. 

Slide 8.4.62 
The ROC curve itself is a parametric curve; for each value of x, we plot the pair FP(x), TP(x). The 
curve shows the range of possible behaviors of the classifier. It is typically shaped something like this 
blue curve; the higher the false positive rate we can stand, the higher the rate of detecting true 
positives we can achieve. 

Slide 8.4.63 
Often it is useful to compare two different classifiers by comparing their ROC curves. If we're lucky, 
then one curve is always higher than the other. In such a situation, we'd say that the blue curve 
dominates the red curve. That means that, no matter what costs apply in our domain, it will be better 
to use the blue classifier (because, for any fixed rate of false positives, the blue classifier can achieve 
more true positives; or for any fixed rate of true positives, the blue classifier can always achieve fewer 
false positives). 

If the curves cross, then it will be better to use one classifier in some cost situations and the other 
classifier in other situations. 

Slide 8.4.64 
Machine learning is a huge field that we have just begun to cover. Even in the context of supervised 
learning, there are a variety of other issues, including how to handle missing data, what to do when 
you have very many negative examples and just a few positives (such as when you're trying to detect 
fraud), what to do when getting y values for your x's is very expensive (you might actively choose 
which y's you'd like to have labeled), and many others. 

If you like this topic, take a probability course, and then take the graduate machine learning course. 


