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6.034 Notes: Section 8.1

Slide8.1.1

Thereis no easy way to characterize which particular separator the perceptron algorithm will end up
with. In general, there can be many separators for a data set. Even in the tightly constrained
bankruptcy data set, we saw two runs of the algorithm with different starting points ended up with
dightly different hypotheses. |s there any reason to prefer one separator over the others?

Which Separator?
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Which Separator?

Maximize the margin to closest points

Slide8.1.2

Yes. One natural choiceisto pick the separator that has the maximal margin to its closest points on
either side. Thisisthe separator that seems most conservative. Any other separator will be "closer" to
one class than to the other. The one shown in this figure, for example, seemslikeit's closer to the
black points on the lower |eft than to the red ones.

TO SRR 0T

Slide8.1.3

This one seems safer, no?

Another way to motivate the choice of the maximal margin separator isto see that it reduces the Maximize the margin to closest points
"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changesin the
dataresult in avery different hypothesis. With amaximal margin separator, we can wiggle the data

quite a bit without affecting the separator. Placing the separator very close to positive or negative L]
pointsis akind of overfitting; it makes your hypothesis very dependent on details of the input data.

Let's see if we can figure out how to find the separator with maximal margin as suggested by this

picture.

Which Separator?

TN e I = T
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Slide8.1.4

Margin of a point First we have to define what we are trying to optimize. Clearly we want to use our old definition of
margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation
instead of w bar, because we will end up giving b special treatment in the future.

X3

ijyj(W-xf+b)

» proportional to perpendicular
distance of point x' to hyperplane
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Slide8.1.5
Remember that any scaling of w and b defines the same line; but it will result in different values of Margin of a point
gamma. To get the actual geometric distance from the point to the separator (called the geometric
margin), we need to divide gamma through by the magnitude of w.

X3

ijyj(W-xf+b)

» proportional to perpendicular
distance of point x' to hyperplane

= geometric marginis y /w

6034 - Spring 01 « § Q
" Slide8.1.6
Margin The next issue is that the we have defined the margin for a point relative to a separator but we don't
want to just maximize the margin of some particular single point. We want to focus on one point on
Yy =y'(w.-x"+b) each side of the separator, each of which is closest to the separator. And we want to place the separator
so that the it is as far from these two points as possible. Then we will have the maximal margin
* Scaling w changes value of margin but not actual between the two classes.
distances to separator (geometric margin)
 Pick the margin to closest positive and negative Since we have a degree of freedom in the magnitude of w we're going to just define the margin for
points to be 1 each of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude
of w.)

+lw-x'+b)=1

2
-Uw-x"+b)=1 Y ou might be worried that we can't possibly know which will be the two closest points until we know
what the separator is. It's areasonable worry, and we'll sort it out in a couple of dlides.

6,034 - Sprieg 03 = 6 Q

Slide8.1.7

Having chosen these margins, we can add the two equations to get that the projection of the weight Margin

vector on the difference between the two chosen data points has magnitude 2. Thisis obvious from the

setup, but it's nice to seeit follows. * Pick the margin to closest positive and negative
points to be 1

Then, we divide through by the magnitude of the weight vector and we have a simple expression for +1(w-x' +b)=1

the margin, simply 2 over the magnitude of w. ~Yw- x> +b)=1

* Combining these
w-(x!-x?)=2

* Dividing by length of w gives perpendicular
distance between dashed lines (2 x geometric

margin)
w 2
(- ) = 2
[wl [

6.034 - Spring 03 » 7 4




6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology.

o o i Slide8.1.8
Picking w to Maximize Margin

* Pick w to maximize geometric margin
2
[w
* or, equivalently, minimize
W = \W-W

* or, equivalently, minimize

L - lw.w=lyn
2||'||l||'|| =5wW w_zz;‘w’
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Slide8.1.9

We'd like to find the w that specifies the maximum margin separator. To be a separator, w needs to
classify the points correctly. So, we'll maximize the margin, subject to a set of constraints that require
the points to be classified correctly. We will require each point in the training set to have amargin
greater than or equal to 1. Requiring the margins to be positive will ensure that they are classified
correctly. Requiring them to be greater than or equal to 1 will ensure that the margin of the closest
points wil be greater than or equal to 1. The fact that we are minimizing the magnitude of w will force
the margins to be as small as possible, so that in fact the margins of the closest points will equal 1.

i R Slide 8.1.10
Constrained Optimization

mln%"\»\.v"2 subjectto y'(w-x'+b)-120, v,
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Slide8.1.8

The standard approach to solving this type of problem isto convert it to an unconstrained optimization
problem by incorporating the constraints as additional termsin the function to be minimized. Each of
the constraints is multiplied by aweighting term alpha;. Think of these terms as penalty terms that will
penalize values of w that do not satisfy the constraints.

So, we want to pick w to maximize the geometric margin, that is, to maximize 2 over the magnitude of
w. To maximize this expression, we want to minimize the magnitude of w. If we minimize 1/2 the
magnitude squared that is completely equivalent in effect but simpler analytically.

Of course, thisis not enough, since we could simply pick w = 0 which would be completely useless.

Picking w to Maximize Margin
* Pick w to maximize geometric margin
2
W

* or, equivalently, minimize

1, o 1 1
51‘"" ;EW'W:EZJ:W;Z

* while classifying points correctly
y'iiw.x'+b)21
* or, equivalently,
y'(w-x'+b)-120

6,034 - Spring 03 » 9 Q

So, to summarize, we have defined a constrained optimization problem as shown here. It involves
minimizing a quadratic function subject to a set of linear constraints. These kinds of optimization
problems are very well studied. When the function to be minimized is linear, it isa particularly easy
case that can be solved by a"linear programming" algorithm. In our case, it's a bit more complicated.

Picking w to Maximize Margin
* Pick w to maximize geometric margin
2
[w
* or, equivalently, minimize
W = W-wW

* or, equivalently, minimize

L - lw.w=lyn
2||'||l||'|| =5wW w_zz;‘w’
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Slide8.1.12
Constrained Optimization

mln%"\m"2 subjectto y'(w.x' +b)-120, ¥,
w
than 1).

Convert to unconstrained optimization by incorporating
the constraints as an additional term

m__ir{%g|w||“ ~Yaly'(w-x' +b)- 1]] @,20,v,

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o, > 0, encourages constraints to be satisfied
but we want |least "distortion” of original term..
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Slide8.1.13
This method we have begun to outline here is called the method of L agrange multipliersand the
alpha; are theindividual Lagrange multipliers.

To minimize the combined expression we want to minimize the first term (the magnitude of the weight
vector squared) but we want to maximize the constraint term since it is negated. Since alpha; > 0,

making the constraint terms bigger encourages them to be satisfied (we want the margins to be bigger

However, the bigger the constraint term, the farther we move from the original minimal value of w. In
general we want to minimize this "distortion" of the original problem. We want to introduce just
enough distortion to satisfy the constraints. We'll look at thisin more detail momentarily.

Constrained Optimization

mln%"\»\.v"2 subjectto y'(w-x'+b)-120, v,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

m.jr{%ﬂw"z Y aly'(wx' +b)- 1]] @,20,v,

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o, > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

Method of Lagrange multipliers |

6.034 - Spring 03 = 23

= [ Lagrange multipliers |
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6.034 Notes: Section 8.2

Slide8.2.1

The details of solving a Lagrange multiplier problem are alittle bit complicated. But we are going to
go through the derivation at a somewhat abstract level here, because it gives us some insights and
intuitions about the resulting solution.

We have an expression, L(w,b), that also involves parameters alpha. If we knew what the values of
alpha should be, we could just fix them, minimize L with respect to w and b, and be done. The big
problem isthat we don't know what the alphas are supposed to be.

Maximizing the Margin

L(w, b) = %|w||2 ~Yal/(w.x +b)-1]

6,034 - Sprieg 03 = 1
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Maximizing the Margin
L(w, b) = %|w||2 Sl w-x  b)-1]

Minimized when: EW- =Y ay'x
i

Yay' =0
i
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Slide8.2.3

Slide8.2.2

So, we're going to start by imagining that we know what we want the alphas to be. We'll hold them
constant for now, and figure out what values of w and b would optimize L for those fixed alphas. We
can do this by taking the partial derivatives of L with respect to w and b and setting them to zero,
getting two constraints. We find that the best value of w, w* is aweighted sum of the input points (in
the same form as the dual perceptron); and we get an extra constraint that the sum of the alphas for the
positive points has to equal the sum of the alphas for the negative points.

We can substitute this expression for the optimal w's back into our original expression for L, getting L
as afunction of apha. Now we have an expression involving only a phas, which we don't know, and
x's and y's, which we do know. This function is known as the dual Lagrangian. One of the most
important things about it, from our perspective, is that the feature vectors only appear in dot products

Maximizing the Margin

L(w, b) = %|w||2 S aly(w-x' +b)-1]

with other feature vectors. We'll come back to this point later on.

Dual Lagrangian

maxL(a) subjectto Y .ay'=0 and a, >0,Vi
“ |
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Slide8.2.5

In the solution, most of the alphas will be zero, corresponding to data points that do not provide
binding constraints on the choice of the weights. A few of the data points will have their alphas be

Minimized when: EW- = EG’.Y')" ;Z%Y' =0
i i

Substituting w* into L yields dual Lagrangian:

L(a) = Zﬂ’; = }Zzamﬂn*axk
i1

=1 k=1 \
A\

products of the
feature vectors
appear
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Slide8.2.4

Now, it'stime to pick the best values for the aphas. We do so (for reasons that you'll havetolearnin a
meath class) by choosing the alpha values that maximize this expression. We will retain the constraints
that the sum of the alpha values for positive pointsis equal to the sum of the alpha values for negative
points, and that the al phas must be positive.

Note that we will be solving for m alphas. We started with n+ 1 (the number of features, plus one)
variablesin the original Lagrangian and now we have m (the number of data points) variablesin the
dual Lagrangian. For the low-dimensional examples we have been dealing with this seemslike a
horrible tradeoff. We will see later that this can be avery good tradeoff in some circumstances.

We have two constraints, but they are much simpler. One constraint is simply that the alphas be non-
negative---this is required because our original constraints were >= inequalities. The constraint on the
alphas comes from the setting to zero the derivative of the Lagrangian with respect to the offset b.

This problem isnot trivial to solvein general; we'l talk more about this later. For now, let us assume
that we can solve it and get the optimal values of alphas.

Dual Lagrangian

nonzero; they will al satisfy their constraints with equality (that is, their margin is equal to 1). These
are called support vector s and they are the ones used to define the maximum margin separator. Y ou
could remove al the other data points and still get the same separator. Because the sparsity of support
vectors is so important, this learning method is called asupport vector machine, or SVM.

maxL(a) subjectto Y .ay'=0 and a, >0,Vi

In general, since o, >= 0, either
o, = 0: constraint is satisfied with
no distortion at optimum w
or
a, > 0: constraint is satisfied with
equality (in this case x' is known as a
support vector)

6.034 - Spring 03 = §
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Slide 8.2.6
Dual Lagrangian Given the optimal alphas, we can compute the weights. but this time, the coefficientsin the sum are
. , . the Lagrange multipliers, the alphas, which are mostly zero. This means that the equation of the
maxL(a) subjectto Y ay'=0 and a, >0,Vi maximum margin separator depends only on the handful of data points that are closest to it. It makes

[ sense that all the rest of the points would be irrelevant.

In general, since a; >= 0, either e a=0 We can use the fact that at the support vectors the constraints hold with equality to solve for the value
diust}::rtc"c;ncg?sr:;:;t |:‘1s\itlsﬂed with no of the offset b. Each such constraint can be used to solve for this scalar.

i u .,

ar .

o, > 0: constraint is satisfied with equality ¥

(x' is known as a support vector)

|""- = Z“J"""| b=1/y —w'x
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Slide8.2.7

We have not discussed actual algorithms for finding the maxima of the dual Lagrangian. It turns out Dual Lagrangian

that the optimization problem we defined is arelatively simple form of the general class of quadratic . , .
programming problems, which are known to (a) have a unique maximum and (b) can be found using maxL(a) subject to ZQJ’ =0 and o; =0, Vi

existing algorithms. A number of variations on these algorithms exist but they are beyond our scope. [

In general, since o, >= 0, either
o, = 0: constraint is satisfied with no
distortion at optimum w

(x' is known as a support vector)

W =3arx b=1/y"-wx

= Has a unique maximum vector

» Can be found using quadratic programming
or gradient ascent

6.034 - Sprieg €3 =7 4

Slide8.2.8
SVM Classifier

« Given unknown vector u, predict class (1 or -1) as
follows:

With the values of the optimal alpha's and b in hand, and the knowledge of how w is defined, we now
have a classifier that we can use on unknown points. Crucialy, notice that once again, the only thing
we care about are the dot products of the unknown vector with the data points.

h(u) = sfgn[irx,y’x' U+ b]
=1

«The sum is over k support vectors

6.034 - Sprieg 63 = 8 Q

Side8.2.9

Here's the result of running a quadratic programming algorithm to find the maximal margin separator Bankruptcy Example

for the bankruptcy example. Note that only four points have non-zero apha's. They are the closest

points to the line and are the ones that actually define the line. T *LJJ/ -

ay' for support vectors are -
non-zero, all others are zero.

6.034 - Bprieg 03 -8 q
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Slide 8.2.10
Key Points
. Let's highlight once again afew of the key points about SVM training and classification. First and
* Learning depends only on dot products of sample foremost, and at the risk of repeating myself, recall that the training and classification of SVMs
pairs. Recognition depends only on dot products of depends only on the value of the dot products of data vectors. That is, if we have away of getting the
unknown with samples. dot products, the computation does not otherwise depend explicitly on the dimensionality of the

feature space.

£.034 - Spring 03 = 10 q

Slide8.2.8
SVM Classifier

« Given unknown vector u, predict class (1 or -1) as
follows:

The fact that we only need dot products (as we will see next) means that we will be able to substitute
more general functions for the traditional dot product operation to get more powerful classifiers
without really changing anything in the actual training and classification procedures.

k
h(u) = sign{zfx,y’x' u+ b]
=1

«The sum is over k support vectors

6,034 - Spring 03 » 8 q

Slide8.2.12
Key Points
. Another point to remember is that the resulting classifier does not (in general) depend on all the
* Learning depends only on dot products of sample training points but only on the ones "near the margin”, that is, those that help define the boundary
pairs. Recognition depends only on dot products of between the two ¢l asses.

unknown with samples.

= Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

* The classifier depends only on the support vectors,
not on all the training points.

6.034 - Spring 03 = 22 q

Slide8.2.13 g
Key Points

The maximum margin constraint helps reduce the variance of the SVM hypotheses. Insisting on a
minimum magnitude weight vector drastically cuts down on the size of the hypothesis class and helps
avoid overfitting.

* Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

= Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

* The classifier depends only on the support vectors,
not on all the training points.

* Max margin lowers hypothesis variance.

6.034 - Spring 03 = 23 q
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5 Slide8.2.14
Key Points
Finally, we should keep firmly in mind that the SVM training process guarantees a unique global

* Learning depends only on dot products of sample maximum. And it runs in time polynomial in the number of data points and the dimensionality of the
pairs. Recognition depends only on dot products of data.

unknown with samples.

» Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

* The classifier depends only on the support vectors,
not on all the training points.

* Max margin lowers hypothesis variance.

* The optimal classifier is defined uniquely - there
are no “local maxima” in the search space

* Polynomial in number of data points and
dimensionality
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Slide83.1 Not Linearly Separable?
Thus far, we have only been talking about the linearly separable case. What happens for the case in sRequire 0<a, <C
which we have a"nearly separable” problem? That is, some "noise points' that are bound to be

) o . » C specified by user; controls tradeoff between size
misclassified by alinear separator.

of margin and classification errors

It is useful to think about the behavior of the dua perceptron on this type of problem. In that *C = oo for separable case

algorithm, the value of the alpha; for a point isincremented proportionally to its distance to the . . = .
separator. In fact, if the point is classified correctly, no change is made to the multiplier. We can see = - i "
that if point i stubbornly resists being classified, then the value of alpha; will continue to grow . * i i .
without bounds. * . > * e
e . L .

The alpha's in the dual perceptron are analogous to the values of the Lagrange multipliersin the ¢ . e o .
SVM. In both cases, the separator is defined as alinear combination of the input points, with the i ®e . .
alphas being the weights. . . . =

L]
So, one strategy for dealing with these noise pointsin an SVM isto limit the maximal value of any o pm s g

of the alpha's (the Lagrange multipliers) to some C. And, furthermore, to ignore the points with this
maximal value when computing the margin. Clearly, if we ignore enough points, we can always get
back to alinearly separable problem. By choosing alarge value of C, we will work very hard at correctly classifying all the points, alow value of C will allow usto give up more
easily on many of the points so as to achieve a better margin.

Slide8.3.2
C Change This simple example shows how changing C causes the geometric margin to change. High values of C
penalize misclassifications more. Low values may permit misclassifications to achieve better margin.

B 5 home Craphics p—" B 0 < heme Graphics - =8
[ ° L °
® £ ® e
o ° o °
c=10 ' e
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Slide8.3.3
Example: Linearly Separable
Here is an example of a separator on a simple data set with four points, which are linearly separable.
The colors show the result returned by the classification function on each point in the space. Gray
means near 1 or -1. The more intense the blue, the more positive the result; the more intense the red,
the more negative. Points lying between the two gray lines return values between -1 and +1.

Note that only three of the four samples are actually used to define w, the ones circled. The other plus
sample might as well not be there; its coefficient alphais zero.

The samplesthat are actually used are the support vectors.

Image by Patrick Winston
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Another example: Not linearly Siide8.3.4

separable The next example is the same as the previous example, but with the addition of another plus samplein

the lower left corner. There are several points of interest.

First, the optimization has failed to find a separating line, as indicated by the minus sample surrounded
by ared disk. The alphas were bounded and so the contribution of this misclassified point is limited
and the algorithm converges to aglobal optimum.

Second, the added point produced quite a different solution. The algorithm islooking for best possible
dividing line; atradeoff between margin and classification error defined by C. If we had kept a
solution close to the onein the previous slide, the rogue plus point would have been misclassified by a
lot, while with this solution we have reduced the misclassification margin substantially.

Image by Patrick Winston
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Slide8.35
Isn't a linear classifier very limiting?
However, even if we provide a mechanism for ignoring noise points, aren't we really limited by a
linear classifier? Well, yes.

However, in many cases, if we transform the feature values in a non-linear way, we can transform a
problem that was not linearly separable into one that is. This example, shows that we can create a
circular separator by finding alinear classifier in a feature space defined by the squares of the original
feature values. That is, we can obtain anon-linear classifier in the original space by finding alinear
classifier in atransformed space.

Hold that thought.

not linearly linearly separable using
separable squared value of features.

Important: Linear separator in transformed feature space
maps inte non-linear separator in original feature space

6.034 - Sprieg €3 = 5 Q

Slide 8.3.6

Not separable?
Try a higher dimensional space! Furthermore, when training samples are not separable in the original space they may be separable if
you perform atransformation into a higher dimensional space, especialy one that is a non-linear
transformation of the input space.

For the example shown here, in the original feature space, the samplesall liein aplane, and are not
separable by a straight line. In the new space, the samplesliein athree dimensional space, and happen
to be separable by aplane.

The heuristic of moving to a higher dimensional space is general, and does not depend on using
SVMs.

- 7>
x?
However, we will see that the support vector approach lends itself to movement into higher
# = | dimensional spaces because of the exclusive dependence of the support vector approach on dot
Not separable with 2D line Separable with 3D plane products for learning and subsequent classification.

6.034 - Spnieg €3 = 6 Q
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Slide8.3.7

First, suppose there is afunction, phi, that puts the vectors into another, higher-dimensional space,
which will also typicaly involve a non-linear mapping of the feature values. In general, the higher the
dimensionality, the more likely there will be a separating hyperplane.

By moving to a higher-dimensional feature space, we are also moving to a bigger hypothesis class, and
so we might be worried about overfitting. However, because we are finding the maximum margin
separator, the danger of overfitting is greatly reduced.

Slide 8.3.8

What you need

* To get into the new feature space, you use ¢(x')

* The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

6.034 - Spring 03 » 7
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What you need

* To get into the new feature space, you use ao(x')

* The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

* Recall that SVM’s only use dot products of the

Even if we aren't in danger of overfitting, there might be computational problemsif we move into
higher dimensional spaces. In real applications, we might want to move to orders of magnitude more
features, or even (in some sense) infinitely many features! We'll need a clever trick to manage this...

Y ou have learned that to work in any space with the support vector approach, you will need (only) the
dot products of the samplesto train and you will need the dot products of the samples with unknowns

to classify.
data, so

* To optimize classifier, you need ®(x')- ®(x"}

¢ To run classifier, you need ®(x')-®(u)

* Sp, all you need is a way to compute dot products
in transformed space as a function of vectors in
original space!

6,034 - Spring 03 » 8 Q

Slide8.3.9

Let's assume that we have a function that allows us to compute the dot products of the transformed
vectorsin away that depends only on the original feature vectors and not directly on the transformed
vectors. We will cal thisthe kernel function. (This usage of the term "kernel" isrelated to kernel
functions we saw in regression; they are both about measuring effective distances between pointsin
different spaces.)

Then you do not need to know how to do the transformations themselves! Thisiswhy the support-
vector approach is so appealing. The actual transformations may be computationally intractable, or
you may not even know how to do the transformations at al, but you can still learn and classify
without ever moving explicitly up into the high-dimensional space.

Slide8.3.10
Standard Choices For Kernels

* No change (linear kernel)

D(x')- d(x*) = K(x', x*) = x' - x*

£.034 - Spring 03 = 10 Q

Note that you don't need anything else. So, al we need is away of computing the dot product between
the transformed feature vectors.

The “Kernel Trick”

« If dot products can be efficiently computed by
o(x')- o(x*) = K(x',x*)

* Then, all you need is a function on low-dim inputs
K(x',x*)

* You don’t need ever to construct high-dimensional
O(x')

6,034 - Spring 03 » 9
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So now we need to find some phis (mappings from low to high-dimensional space) that have a
convenient kernel function associated with them. The simplest case is one where phi is the identity
function and K isjust the dot product.
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Slide 8.3.8
One such other kernel function is the dot product raised to a power; the actual power is a parameter of What you need

the learning algorithm that determines the properties of the solution. .
* To get into the new feature space, you use ¢(x')

* The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

* Recall that SVM’s only use dot products of the
data, so

* To optimize classifier, you need ®(x')- ®(x"}

¢ To run classifier, you need ®(x')-®(u)

* Sp, all you need is a way to compute dot products
in transformed space as a function of vectors in
original space!
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Polynomial Kernel Example Side8.3.12
(one faatira) Not Let'slook at asimple example of using a polynomial kernel. Consider the one dimensional problem
B § 9§ 9§ § ®Bx separable shown here, which is clearly not separable. Let's map it into a higher dimensional feature space using

o1 02 03 04 0.5 L1

the polynomial kernel of second degree (n=2).

6.034 - Spring 03 = 22 q

Slide83.13 Polynomial Kernel Example
Note that a second degree polynomial kernel is equivalent to mapping the single feature value x to a (one feature) Not
three dimensional space with feature values x2, sgrt(2)x, and 1. Y ou can see that the dot product of two = a - o Py . X separable
of these feature vectors is exactly the value computed by the polynomial kernel function. Ox) - (7,42, 1)
If we plot the original points in the transformed feature space (using just the first two features), we see " | e Separable
in fact that the two classes are linearly separable. Clearly, the third feature value (equal to 1) will be o /
irrelevant in finding a separator. 03 ®(x) ©(2)
e / = x4 2xz 4 1
The important aspect of al of thisisthat we can find and use such a separator without ever explicitly Piek | / ™) =+ s}

computing the transformed feature vectors - only the kernel function values are required. = / Lo

6.034 - Spring 03 = 23 Q

Slide8.3.14
Polynomial Kernel
. Hereisasimilar transformation for atwo dimensional feature vector. Note that the dimension of the
* Polynomial kernel for n=2 and features x=[x, x,] transformed feature vector is now 6. In general, the dimension of the transformed feature vector will

K(%,2) = (1+x-2)} grow very rapidly with the dimension of the input vector and the degree of the polynomial.

is equivalent to the following feature mapping:

D(x) = [x] x3 V2x,%, V2%, V2x, 1]

* We can verify that:
D(x) - DN(Z) = X[ 2] + X123 +2X,X,2,Z, +2%,Z, +2X,Z, +1
= (1+x,2, +X%,2,)
=(1+x.2)°
=K(x,z)

6.034 - Spring 03 = 14 q
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Slide 8.3.15
Let'slook at the behavior of these non-linear kernels.

The decision surface produced by the non-linear kernelsis curved. Here is an example for which the
(unsuccessful) attempt on the left is with a simple dot product; the attempt on the right is done with a
polynomial kernel of degree 3. Note the curve in the solution, and note that four of the samples have
become support vectors.

Generally, the higher-dimensional the transformed space, the more complex the separator isin the
original space, and the more support vectors will be required to specify it.

Slide8.3.16
Standard Choices For Kernels

* No change (linear kernel)
P(x')- d(x*) = K(x', x*) = x' - x*

* Polynomial kernel (nth order)
K(x!', x*) = (1+x' - x*)"

« Radial basis kernel (o is standard deviation)

i 2
x-x*

K(x',x*) = e— -e
G 20?2 202

(= x* px-x*)

6,034 - Spring 63 » 16 Q
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You can get acurved separator if you use radial basis functions, which give us aclassifier that isasum
of the values of several Gaussian functions.

Let's pause a minute to observe something that should strike you as a bit weird. When we used the
polynomial kernels, we could see that each input feature vector was being mapped into a higher-
dimensional, possibly very high dimensional, feature vector. With the radial-basis kernel each input
feature vector is being mapped into afunction that is defined over the whole feature space! In fact,
each input feature point is being mapped into a point in an infinite-dimensional feature space (known
as a Hilbert space). We then build the classifier as sum of these functions. Whew!

The actual operation of the process is less mysterious than this "infinite-dimensional” mapping view,
aswe will see by avery simple example.

Polynomial Kernel

Images by Patrick Winston

6,034 - Spring 63 » 15 Q

Another popular kernel function is an exponential of the square of the distance between vectors,
divided by sigma squared. Thisisthe formulafor a Gaussian bump in the feature space, where sigma
isthe standard deviation of the Gaussian. Sigma s a parameter of the learning that determines the
properties of the solution.

Radial-basis kernel

« Classifier based on sum of Gaussian bumps with
standard deviation o, centered on support vectors.

h(u) = signlh'(u)]

k
H(u) =Y. ay'K(x' ,u)+b
=1

2
K(x.u):e?

6,034 - Spring 63 » 17 Q

Along the bottom you see that we're dealing with the simple one-dimensional example that we looked
at earlier using a polynomial kernel. The blue points are possitive and the pinkish purple ones are
negative. Clearly this arrangement is not linearly separable.

K (xi,u) can be seen as a"Gaussian bump"; that is, as a function with amaximum at u = xi, that
decreases monotonically with the distance between u and xi, but is always positive and goesto 0 at
infinite distance. The parameter sigma specifies how high the bump is and how fast it falls off (the
area under the curve of each bump is 1, no matter what the value of sigmais). The smaller the sigma,

With aradial-basis kernel, we will be looking for a set of multipliers for Gaussian bumps with the
specified sigma (hereit is 0.1) so that the sum of these bumps (plus an offset) will giveusa
classification function that's positive where the positive points are and negative where the negative

. " Slide 8.3.18
Radial-basis kernel
=01
the more sharply peaked the bump.
points are.
B 8 5 B 8«
£.034 - Spring 03 » 18 4
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Slide 8.3.19

Here is the solution obtained from an SVM quadratic optimization algorithm. Note that four points are Radial-basis kernel
support vectors, as expected, the points near where the decision boundary has to be. The farther
positive points receive apha=0. The value of the offset, b is also shown.

The blue and pink Gaussian bumps correspond to copies of a Gaussian with standard deviation of 0.1

scaled by the corresponding alpha values.

Radial-basis kernel

a,=1.76 a,=-1.76
€=176 @ --176 b=0.525 o=0.1
7

fr(u) =Y ay'K(x',u)+ b

o

20

K(x',u)=e

support vectors 6.034 - Spring 03 » 20

=176 a,=-1.76

=176 a =176 2=0525 o=0.1

28

support vectors 6.034 - Spring 03 = 19 4

Slide 8.3.20

The black line corresponds to the sum of the four bumps (and the offset). The important point isto
notice where this line crosses zero since that's the decision surface (in one dimension). Notice that, as
required, it succeeds in separating the positive from the negative points.

¢
Slide8.3.21 i i
Radial-basis kernel
Here we see a separator for our simple five point example computed using radial basiskernels. The (large o)

solution on the left, for reference, is the original dot product. The solution on theright is for aradia
basis function with a sigma of one. Note that all the points are now support vectors.

Another radial-basis example
(small o)

Image by Patrick Winston

5.034 - Spring €3 » 22
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Images by Patrick Winston
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If aspaceistruly convoluted, you can always cover it with aradial basis solution with small-enough
sigma. In extreme cases, like this one, each of the four plus and four minus samples has become a
support vector, each specialized to the small part of the total spaceinitsvicinity. Thisisbasically
similar to 1-nearest neighbor and is just as powerful and subject to overfitting.
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Cross-Validation Error
At this point alarm bells may be ringing. By creating these very high dimensional feature vectors, are
we just setting ourselves up for severe overfitting? Intuitively, the more parameters we have the better
we can fit theinput, but that may not lead to better performance on new data.

* Does mapping to a very high-dimensional space
lead to over-fitting?
* Generally, no, thanks to the fact that only the

It turns out that the fact that the SVM decision surface depends only on the support vectors and not support vectors determine the decislon surface.

directly on the dimensionality of the space comes to our rescue.

6.034 - Spring 03 = 23 q

Side8.3.24
Cross-Validation Error
We can estimate the error on new data by computing the cross-validation error on the training data. If
we look at the linearly separable case, it is easy to see that the expected value of leave-one-out cross-
validation error is bounded by the proportion of support vectors.

* Does mapping to a very high-dimensional space
lead to over-fitting?

* Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

* The expected leave-one-out cross-validation error
depends on number of support vectors, not
dimensionality of feature space.

If we take a data point that is not a support vector from the training set, the computation of the

separator will not be affected and so it will be classified correctly. If we take a support vector out, then

the classifier will in general change and there may be an error. So, the expected generalization error

depends on the number of support vectors and not on the dimension.

Expected # support vectors
# training samples

Expected CV error < Note that using aradial basis kernel with very small sigmagives you a high expected number of

support vectors and therefore a high expected cross-validation error, as expected. Yet, aradial basis
kernel with large sigma, athough of similar dimensionality, has fewer expected support vectors and is
likely to generalize better.

« If most data points are support vectors, a sign of
possible overfitting, independent of the
dimensionality of feature space.

We shouldn't take this bound too serioudly; it is not actually very predictive of generalization

performance in practice but it does point out an important property of SVMs - that generalization

performance is more related to expected number of support vectors than to dimensionality of the
transformed feature space.

£.034 - Spring 03 = 24 q
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Summary
So, let's summarize the SVM story. One key point is that SVMs have atraining method that guarantees

aunique global optimum. This eliminate many headaches in other approaches to machine learning. * A single global optimum

Summary

* A single global maximum
» Quadratic programming or gradient descent
* Fewer parameters

¢ C and kernel parameters (n for polynomial, o for
radial basis kernel)

6.034 - Spring 03 = 26
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» Quadratic programming or gradient descent
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Slide 8.3.26

The other advantage of SVMsisthat there are relatively few parameters to be chosen: C, the constant
used to trade off classification error and width of the margin; and the kernel parameter, such as sigma
inthe radial basis kernel.

These can both be continuous parameters and so there still remains a search requiring some form of
validation, but these are few parameters compared to some of the other methods.
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Summary

And, last but not least, isthe kernel trick. That is, that the whole process depends only on the dot

products of the feature vectors, which is the key to the generalization to non-linear classifiers. * A single global maximum

» Quadratic programming or gradient descent
* Fewer parameters
* C and kernel parameters (n for polynomial, o for
radial basis kernel)
* Kernel
» Quadratic minimization depends only on dot
products of sample vectors
» Recognition depends only on dot products of
unknown vector with sample vectors
* Reliance on only dot products enables efficient
feature mapping to higher-dimensional spaces
where linear separation is more effective.

6.034 - Spring 03 = 27 ‘Q
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Real Data The linear separator is very simple hypothesis class but it can perform very well on appropriate data
) i sets. On the Wisconsin breast cancer data, the maximal margin classifier, with alinear kernel, does as
* Wisconsin Breast Cancer Data well or better as any of the other classifiers we have seen on held-out data. Note that only 37 of the
* 9 features 512 training points are support vectors.
eC=1
» 37 support vectors are used from 512 training
data points
« 12 prediction errors on training set (98%
accuracy)
*96% accuracy on 171 held out points
* Essentially same performance as nearest
neighbors and decision trees
* Don't expect such good performance on every data
set.
£.034 - Spring 03 » 28 4
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SVMs have proved useful in awide variety of applications, particularly those with large numbers of Success Stories

features, such asimage and text recognition problems. They are the method of choicein text
classification problems, such as categorization of news articles by topic, or spam detection, because
they can work in a huge feature space (typically with alinear kernel) without too much fear of * Gene microarray data

overfitting. « putperformed all other classifiers

e specially designed kernel

* Text categorization
e linear kernel in >10,000 D input space
» best prediction performance
« 35 times faster to train than next best classifier
(decision trees)

* Many others:

http://www.clopinet.com/isabelle/Projects/SVM/applist.htm|
£.034 - Spring 03 » 29 4
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6.034 Notes: Section 8.4

Slide8.4.1

In many machine-learning applications, there are huge numbers of features. In text classification,
you often have as many features as there are words in the dictionary. Gene expression arrays have « In many machine learning applications, there are
five to fifty thousand elements. Images can have as many as 512 by 512 pixels.

Feature Selection
« In many machine learning applications, there are
huge numbers of features
e text classification (# words)
e gene arrays (5,000 - 50,000)
e images (512 x 512 pixels)
* Too many features
» make algorithms run slowly
e risk overfitting

@ 6034 - Spring 03 » 2
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There are two approaches to dealing with very large feature spaces: oneisto select a subset of the Feature Selection

given set of features to work with; the other is to make new features that are supposed to describe the

input space more efficiently than the given set of features.

Feature Ranking

» For each feature, compute a measure of its relevance
to the output

» Choose the k features with the highest rankings

= Correlation between feature j and output

206Xy - ¥)

R(J) = =L S—
JZ(x; ~X,YY W -y)

1 i
X;=DZXJ Jv"':;z}’l

» Correlation measures how much x tends to deviate
from its mean on the same examples on which y
deviates from its mean

@ 6034 - Spring 01 = 4

Feature Selection

huge numbers of features
e text classification (# words)
e gene arrays (5,000 - 50,000)
e images (512 x 512 pixels)

@ 6,034 - Sprieg 03 = 1

Slide8.4.2

When there are lots of featuresin adomain, it can make some machine learning algorithms run much
too slowly. Worsg, it often causes overfitting problems: most classifiers have a complexity related to
the number of features, and in many of these cases we can have many more features than training
examples, which doesn't give us much confidence in our parameter estimates.

« In many machine learning applications, there are
huge numbers of features
e text classification (# words)
e gene arrays (5,000 - 50,000)
e images (512 x 512 pixels)
* Too many features
» make algorithms run slowly
e risk overfitting
* Find a smaller feature space
* subset of existing features
* new features constructed from old ones

@ 6,034 - Spring 03 = 3
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The simplest feature-selection strategy is to compute some score for each feature, and then select the k
features with the highest rankings.

A popular feature score is the correlation between afeature and the output variable. It measures the
degree to which afeature varies with the output, and is usable when the output is discrete or
continuous.
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We computed the correlations of each of the features in the heart disease data set with the output. They
are shown here in sorted order, with reference to the decision tree we learned on this data.

We can see that most of the features used in the tree show up among the top features, ranked according
to correlation. Y ou can see the features with a positive correlation score indicate that heart disease is
more likely, and those with a negative score indicate that it islesslikely.

Slide 8.4.6

s . —
displacement 0.77 i

weight -0.77a_
Rt B \\ ~ weight > 2224.5 (o]
cyl=8 -0.58
origin=1 -0.54 @;>®

model-year 0.44 "“\__
origin=3 0.40

cyl=6 -0.37 ‘eight > 2775

aceceleration 0.35

origin=2 0.26 [II EI

the number of cylinders.
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Slide8.4.7
Asusual, XOR will cause us trouble if we do scoring of single features. In an XOR problem, each
feature will, individually, have a correlation of O with the output.

To solve xor problems, we need to look at groups of features together.

Slide 8.4.8

» Consider subsets of variables
» too hard to consider all possible subsets

validation error to measure the goodness of
using different feature subsets with your
classifier

« greedily construct a good subset by adding or
subtracting features one by one

@ 6.034 - Spriag 03 « 8

Correlations in Heart Data

I.-/ thal=1

cp=4

thal=3

ea=0

oldpeak

thalach

Top | axang
15

of slope=1

25 slope=2

cp=3

sex

ca=2

cp=2

| ca=1

AN age
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Correlations in MPG > 22 data Here'sasimilar figure for the auto fuel efficiency data. It's interesting to see that the highest-
correlation feature is binary choice about whether there are 4 cylinders. It looks like binary features
have atendency to be preferred (since the output is binary, as well, and so they often match up

cyl=4 0.82 ___,_-——f{isﬁwts’ 89, perfectly). But displacement is aso very highly ranked, and probably contains more information than

XOR Bites Back

* As usual, functions with XOR in them will cause us
trouble

» Each feature will, individually, have a correlation
of 0 (it occurs positively as much as negatively
for positive outputs)

* To solve XOR, we need to look at groups of
features together

@ 6.034 - Spriag 01 « 7

Subset Selection Ideally, we'd like to try all possible subsets of the features and see which one works best. We can
evaluate a subset of features by training a classifier using just that subset, and then measuring the
performance using training set or cross-validation error.

* wrapper methods: use training set or cross- Instead of trying all subsets, we'll consider greedy methods that add or subtract features one at atime.
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In the forward selection method, we start with no features at all in our feature set. Then, for each
feature, we consider adding it to the feature set: we add it, train a classifier, and see how well it
performs (on a separate validation set or by using cross-validation). We then add the feature that

generated the best classifier to our existing set and continue.

Well terminate the algorithm when we have as many features as we can handle, or when the error has

quit decreasing.

Forward Selection

Given a particular classifier you want to use
F= [}
For each f,
Train classifier with inputs F + (£}
Add £, that results in lowest-error classifier
to F
Continue until F is the right size, or error has
guit decreasing

* Decision trees, by themselves, do something
similar to this

@ £.034 - Spring 03 = 10

Slide8.4.11

Even if we do forward selection, XOR can cause us trouble. Because we only consider adding features
one by one, neither of the features will look particularly attractive individually, and so we would be

unlikely to add them until the very end.

Backward Elimination

Given a particular classifier you want to use
F = all features
For each f,
Train classifier with inputs F - (E39]
Remove f, that results in lowest-error
classifier from F
Continue until F is the right size, or error
increases too much

6.034 - Spring 03 = 22
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Forward Selection

Given a particular classifier you want to use
F= [}
For each f,
Train classifier with inputs F + (£}
Add £, that results in lowest-error classifier
to F
Continue until F is the right size, or error has
quit decreasing

@ 6,034 - Spring 03 » 9
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Decision trees work sort of like this: they add features one at a time, choosing the next featurein the
context of the ones already chosen. However, they establish awhole tree of feature-selection contexts.

Forward Selection

Given a particular classifier you want to use
F= [}
For each f,
Train classifier with inputs F + (£}
Add £, that results in lowest-error classifier
to F
Continue until F is the right size, or error has
quit decreasing

* Decision trees, by themselves, do something
similar to this
« Trouble with XOR

® conn-smea s 211

Slide8.4.12
Backward elimination works in the other direction. It starts with all the features in the feature set and
eliminates them one by one, removing the one that resultsin the best classifier at each step.

This strategy can cope effectively with XOR-like problems. But it might be impractical if the initial
feature set is so large that it makes the algorithm to slow to run.
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Here's a plot of the cross-validation accuracy against number of features chosen by forward selection Forward Selection on Auto Data
on the auto data. The classifier we used was nearest neighbor.

P fatestat At

Here we can see that adding features improves cross-validation accuracy until the last couple of :racl'fdsa-tion =
features. If there were alarge number of relatively noisy features, adding them would make the RN

performance go down even further, as they would give the classifier further opportunity for overfitting.

;lurnl;er of feat;lres .adde.d
£.034 - Spring 63 » 13 4
g ” Slide8.4.14
Backward Elimination on Auto Data The picture for backward elimination is similar. But notice that it seems to work a hit better, even
when we are eliminating alot of features. This may be because it can decide which features to
— Wi et eliminate in the context of all the other features. Forward selection, especially in the early phases,
validation picks features without much context.
accuracy - CER ar
nilrn be.r of ;eatu;'ﬁ elllrnin:aled .
& 6,034 - Spring 03 « 14
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On the heart data, we need about 8 features before we're getting reasonably good performance. The Forward Selection on Heart Data

accuracies are pretty erratic after that; it's probably an indication of overal variancein the
performance estimates.

Farwars Beiwstan . Hear

Cross- L
validation
accuracy

|

NN R R EEEEEEE

number of features added
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Backward Elimination on Heart Data We can see similar performance with backward elimination. It's possible to get rid of alot of features
before performance suffers dramatically. And, it really seems to be worthwhile to eliminate some of
the features, from a performance perspective.

Basimars Bamin s

Cross- Lok |
validation
BCCUTacy o

number of features eliminated
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Slide

Backward elimination and forward selection can be computationally quite expensive, because they
require you, on each iteration, to train approximately as many classifiers as you have features.

In some classifiers, such as linear support-vector machines and linear neural networks, it's possible to
do backward elimination more efficiently. Y ou train the classifier once, and then remove the feature

8.4.17

that has the smallest input weight.

These methods can be extended to non-linear SVMs and neural networks, but it gets somewhat more

complicated there.

©

Clustering

* Form clusters of inputs
* Map the clusters into outputs

* Given a new example, find its cluster, and generate
the associated output

£.034 - Spring 03 = 18
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So, in this case, we might divide the input pointsinto 4 clusters. The stars indicate the cluster centers.

Clustering

* Form clusters of inputs
* Map the clusters into outputs

* Given a new example, find its cluster, and generate
the associated output

6.034 - Spring 03 = 20

Recursive Feature Elimination

Train a linear SVM or neural network
Remove the feature with the smallest weight
Repeat

* More efficient than regular backward elimination
* Requires only one training phase per feature

@ 6.034 - Spring 03 = 27
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Another whole strategy for feature selection is to make new features. One very drastic method is to try
to cluster all of theinputsin your data set into arelatively small number of groups, and then learn a
mapping from each group into an output.

Clustering

* Form clusters of inputs
* Map the clusters into outputs

* Given a new example, find its cluster, and generate
the associated output

. °, .y s
[ ] .,{:’ ® .f('
- * o
“H-\._\__H .
.
L
@ 6.034 - Spring 03 « 19

Slide 8.4.20
Then, for each cluster, we would assign the majority class. Now, to predict the value of anew point,
we would see which region it would land in, and predict the associated class.

Thisisdifferent from nearest neighborsin that we actually discard al the data except the cluster
centers. This has the advantage of increasing interpretability, since the cluster centers represent
"typica" inputs.
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So, what makes a good clustering? There are lots and lots of different technical choices. The basic idea Clustering Criteria

isusually that you want to have clusters in which the distance between points in the same group is . . o

small and the distance between pointsin different groups s large. « small distances between points within a cluster

» large distances between clusters
Clustering, like nearest neighbor, requires a distance metric, and the results you get are as scale-

sensitive asthey arein nearest-neighbor. « Need a distance measure, as in nearest neighbor
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K-Means Clustering One of the simplest and most popular clustering methods is K-means clustering. It tries to minimize
. - the sum, over al the clusters, of the variance of the points within the cluster (the distances of the
¢ Tries to minimize points to the geometric center of the cluster).
—~ squared dist from
G e point to mean Unfortunately, it only manages to get to alocal optimum of this measure, but it's usually fairly
Y Tlx' - 4, B reasonable.
J=1lie5; "\
II I\_
elements of |~ mean of B
cluster j in cluster j
* Only gets, greedily, to a local optimum
@ £.034 - Spring 03 # 22
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Here is the code for the k-means clustering algorithm. Y ou start by choosing k, your desired number of K-means Algorithm

clusters. Then, you can randomly choose k of your data points to serve astheinitial cluster centers. Choose k

Randomly choose k points Cj to be cluster centers

@ 6.034 - Spring 03 » 23
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K-means Algorithm Then, we enter aloop with two steps. The first step is to divide the data up into k classes, using the
cluster centers to make a VVoronoi partition of the data. That is, we assign each data point to the cluster

Ch k )
e center that it's closest to.

Randomly choose k points Cj to be cluster centers
Loop
Partition the data into k classes 8j according
to which of the Cj they’re closest to
For each 8j, compute the mean of its elements
and let that be the new cluster center

Now, for each new cluster, we compute a new cluster center by averaging the elements that were
assigned to that cluster on the previous step.

@ 6,034 - Spring 03 » 24
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We stop when the centers quit moving. This process is guaranteed to terminate. K-means Algorithm

Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes 8j according
to which of the Cj they’re closest to

For each 8j, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

* Guaranteed to terminate
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K-means Algorithm One possible problem is that cluster centers can become "orphaned”. That is, they no longer have any
pointsin them (or perhaps just asingle point). A standard method for dealing with this problem is

Ch k . ol
e simply to randomly re-initialize that cluster center.

Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes 8j according
to which of the Cj they’re closest to

For each 8j, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

* Guaranteed to terminate
« If a cluster becomes empty, re-initialize the center
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Here's arunning example simulation of the k-means algorithm. We start with this set of input points. K-Means Example

@ 6,034 - Spring 63 » 27
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K-Means Example And randomly pick 4 of them to be our cluster centers.
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Now we partition the data, assigning each point to the center to which it is closest.

K-Means Example

L nd o o
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Having moved the means, we can now do a new reassignment of points.

K-Means Example

L o
b e ® o ©
o ol . O‘ff
°
e ® .
e e
®
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gt 0o’
s °
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K-Means Example

Slide 8.4.30

We move each center to the mean of the points that belong to it.

©
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And recompute the centers.
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Here we reassign one more point to the green cluster, K-Means Example
°
b e ® e o ©
o ol ° ¥
o8 * ® e
e o
°
* e % ®
e o0
°, °
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K-Means Example Which causes the green and blue centers to move abit. At this point, the red and yellow clusters are
stable.
°
b e ® e o ©
e oko® o ¥
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e
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Now two more points get reassigned to green, K-Means Example
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K-Means Example And we recompute the centers, to get a clustering that is stable, and will not change under further
iterations.
°
& 2 . 00 -
e @ w
Yo ® e
e o
® e
o ‘%
% °
@ £.034 - Spring 63 » 36




6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology.

Slide 8.4.37

The k-means algorithm takes a real-valued input space and generates a one-dimensional discrete
description of the inputs. In principal components analysis, we take a real-valued space, and represent
the datain anew multi-dimensional real-valued space with lower dimensionality. The new coordinates

are linear combinations of the originals.

Principal Components Analysis

« Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

* PCA helps us find such a subspace whose
coordinates are linear functions of the originals
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It's harder to see in three dimensions, but here's a data set that might be effectively described using

only two dimensions.

Cartoon of algorithm

* Normalize the data (subtract mean, divide by
stdev)

@ £.034 - Spring 03 = 40

©

Principal Components Analysis

* Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

* PCA helps us find such a subspace whose
coordinates are linear functions of the originals
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Theideaisthat even if your data are described using alarge number of dimensions, they may lieina
lower-dimensional subspace of the original space. So, in thisfigure, the data are described with two
dimensions, but a single dimension that runs diagonally through the data would describe it without

losing too much information.

Principal Components Analysis

« Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

* PCA helps us find such a subspace whose
coordinates are linear functions of the originals

Bt/ fwww. okstate edu/artscif
botany/fordinate/PCA htm

Slide 8.4.40

To really understand what's going on in this algorithm, you need to have had linear algebra. We'll just
giveyou a"cartoon" idea of how it works.

We start out by normalizing the data (subtracting the mean and dividing by the standard deviation).
The new set of coordinates we construct will have its origin at the centroid of the data.
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Now, we find the single line along which the data have the most variance. It's the dimension that, were Cartoon of algorithm
we to project the data onto it, would result in the most "spread” of the data. We'll let this be our first

principal component. » Normalize the data (subtract mean, divide by

stdev)
* Find the line along which the data has the most
variability: that’s the first principal component
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Cartoon of algorithm Now, we project the data down into the n-1 dimensional space that's orthogonal to the line we just
chose, and repeat.
» Normalize the data (subtract mean, divide by »
stdev)
* Find the line along which the data has the most
variability: that’s the first principal component
s Project the data into the n-1 dimensional space
orthogonal to the line
* Repeat
@ 6.034 - Spring 03 « 42
Slide8.4.43 ]
The result of this processis anew set of orthogonal axes. The first k of them give alower-dimensional Cartoon of algorithm

ace that represents the variability of the data as well as possible.
. P 4 P e Normalize the data (subtract mean, divide by

stdev)

* Find the line along which the data has the most
variability: that’s the first principal component

s Project the data into the n-1 dimensional space
orthogonal to the line

* Repeat

» Result is a new orthogonal set of axes

* First k give a lower-D space that represents the
variability of the data as well as possible
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Cartoon of algorithm If you have some experience with linear algebra, then | can tell you that what we really do isfind the

eigenvectors of the covariance matrix with the k largest eigenvalues.
e Normalize the data (subtract mean, divide by g 9 9

stdev)

* Find the line along which the data has the most
variability: that’s the first principal component

s Project the data into the n-1 dimensional space
orthogonal to the line

* Repeat

» Result is a new orthogonal set of axes

* First k give a lower-D space that represents the
variability of the data as well as possible

* Really: find the eigenvectors of the covariance
matrix with the k largest eigenvalues
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One problem with PCA (asit's called by its friends) is that it can only produce a set of coordinates Linear Transformations Only
that's alinear transformation of the originals. But here's a data set that seems to have a fundamentally
one-dimensional structure. Unfortunately, we can't express its axis as alinear combination of the
original ones. There are some other cool dimensionality reduction techniques that can actualy find this
structure!

There are fancier methods that can find this structure
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Insensitive to Classification Task Another problem with PCA isthat it (like k-Means clustering) ignores the classes of the points. So, in
this example, the principal component is the line that goes between the two classes (it's a great
ol L separator, but that's not what we're looking for right now).
S /' e
F
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Now, if we project the data onto that line (which is what would happen if we wanted to reduce the Insensitive to Classification Task
dimensionality of our data set to 1), the positive and negative points are completely intermingled, and
we can never get a separator. e
There are dimensionality-reduction techniques, also, sadly beyond our scope, that try to optimize the ‘r,/'ﬂ../
discriminability of the data rather than its variability, which don't suffer from this problem. /
o
/l
There are fancier methods that can take class into account
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Validating a Classifier We're just going to tack one additional topic onto the end of this section. It has to do with

understanding how well a classifier works. So far, we've been thinking about optimizing training error
or cross-validation error, where "error” is measured as the number of examples we get wrong. Let's
examine this alittle more carefully.

predicted y
0 1

true 0 | A | B

Y 1 C | DB In abinary classification problem, on asingle example, there are 4 possible outcomes, depending on
the true output value for the input and the predicted output value. In thistable, we'll assign values A
through D to be the number of times each of these outcomes happens on a data set.
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Case B, in which the answer was supposed to be 0 but the classifier predicted 1 iscalled a"false Validating a Classifier

positive" or atype 1 error. predicted y
0 1

|— | false positive
tue 0 | A | Bl |type1error

Y 1|1c|D
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Validating a Classifier Case C, in which the answer was supposed to be 1 but the classifier predicted 0 is called a"false
predicted y negative' or atype 2 error.
0 1
|— | false positive
tue O | A | B type 1 error
- Y 1+ +c|pD
false negative
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Given these 4 numbers, we can define different characterizations of the classifier's performance. The Validating a Classifier
sensitivity isthe probability of predicting a 1 when the actual output is 1. Thisisaso called thetrue predicted y
positiverate, or TP. 1
|— | false positive
true 0 | A | B t
- Y 1+ +c|pD
false negative
e sensitivity: P(predict 1 | actual 1) = D/(C+D)
« "true positive rate” (TP)
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Validating a Classifier The specificity is the probability of predicting a0 when the actual output is 0.

predicted y
0 1

|— | false positive
tue 0 | A | Bl |type1error

- Y 1+ +c|pD
false negative
 sensitivity: P(predict 1 | actual 1) = D/(C+D)
 “true positive rate” (TP)

» specificity: P(predict 0 | actual 0) = A/(A+B)
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The false-alarm rate s the probability of predicting a 1 when the actual output is 0. Thisis also called Validating a Classifier

the false positive rate, or FP. predicted y
0 1

Classifiers are usually characterized using sensitivity and specificity, or using TP and FP. |— | false positive
tue O | A | B [typeerror

— ¥ 1.lc|D
false negative
type 2 error
e sensitivity: P(predict 1 | actual 1) = D/(C+D)
« "true positive rate” (TP)

« specificity: P(predict 0 | actual 0) = A/(A+B)

« false-alarm rate: P(predict 1 | actual 0) = B/(A+B)
« “false positive rate” (FP)
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Cost Sensitivity Imagine that you're a physician and you need to predict whether a patient has pseuditis based on the
. heth . K " results of some blood tests. The disease is often fatal if it's left untreated, and the treatment is cheap
« Predict whether a patient has pseuditis based on and relatively side-effect free.
blood tests
* Disease is often fatal if left untreated
* Treatment is cheap and side-effect free
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Y ou have two different classifiers that you could use to make the decision. The first has a true-positive Cost Sensitivity
rate of 0.9 and a false-positive rate of 0.4. That means that it will diagnose the disease in 90 percent of i heth i K "
the people who actually have it; and also diagnose it in 40 percent of people who don't have . » ET:gtl:lcteu:tset er a patient has pseuditis based on
* Disease is often fatal if left untreated
* Treatment is cheap and side-effect free
* Which classifier to use?
» Classifier 1: TP = 0.9, FP = 0.4
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Cost Sensitivity The second classifier only has atrue-positive rate of 0.7, but a more reasonable false positive rate of
0.1.

« Predict whether a patient has pseuditis based on

blood tests Given the set-up of the problem, we might choose classifier 1, since all those false positives aren't too
 Disease is often fatal if left untreated costly (but if it causes too much hassle, per patient, we might not want to bring 40 percent of them
» Treatment is cheap and side-effect free back for treatment).

* Which classifier to use?
» Classifier 1: TP = 0.9, FP = 0.4
» Classifier 2: TP = 0.7, FP = 0.1
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One way to address this problem is to start by figuring out the relative costs of the two types of errors. Build Costs into Classifier

Then, for many classifiers, we can build these costs directly into the choice of classification.
* Assess costs of both types of error

In decision trees, we could use a different splitting criterion. For neural networks we could change the » use a different splitting criterion for decision

error function to be asymmetric. In SVM's, we could use two different values of C. trees

» make error function for neural nets asymmetric;
different costs for each kind of error

e use different values of C for SVMs depending on
kind of error
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Tunable Classifiers Often it's useful to deliver aclassifier that istunable. That is, a classifier that has a parameter in it that
lassifi — T " can be used, at application time, to change the trade-offs made between type 1 and type 2 errors. Most
« Classifiers that have a threshold (naive Bayes, classifers that have a threshold (such as naive Bayes, neural nets, or SVMs), can be tuned by changing
neural nets, SVMs) can be adjusted, post learning, the threshold. At different values of the threshold the classifier will tend to make more errors of one
by changing the threshold, to make different trade- type versus the other.
offs between type 1 and type 2 errors
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In aparticular application, we can choose a threshold as follows. Tunable Classifiers

« Classifiers that have a threshold (naive Bayes,
neural nets, SVMs) can be adjusted, post learning,
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors

Let c1 and c2 be the costs of the two different types of errors; let p be the percentage of positive
examples, let x be the threshold parameter that we are allowed to tune, and let TP(x) and FP(x) be the
true-positive and false-positive rates, respectively, of the classifier when the threshold is set to have

valuex.
Then, we can characterize the average, or expected, cost based on this formula, as afunction of x. We *C,,C,;: costs of errors
should choose the value of x that will minimize expected cost. » P: percentage of positive examples

* x: tunable threshold

* TP(x): true positive rate at threshold x

* FP(x): false positive rate at threshold x
» Expected Cost = C,P(1-TP(x)) + C,(1-P)FP(x)
» choose x to minimize expected cost
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ROC Curves One way to see the overall performance of atunable classifier iswith a ROC curve. ROC stands for
"receiver operating characteristics' from the days of the invention of radar.

"

» “receiver operating characteristics
An ROC curveis plotted on two axes; the x axisis the false positive rate and the y axisis the true

1__?? positiverate. In an ideal world, we would have afalse positive rate of 0 and atrue positive rate of 1,
which would put our performance up near the star on this graph.
TP
0 f
FP 1

@ £.034 - Spring 03 = 60




6.034 Artificial Intelligence. Copyright © 2005 by Massachusetts Institute of Technology.

Slide 8.4.61
In reality, as we adjust the parameter in the classifier, we typically go from asituation in which the ROC Curves
classifier aways outputs O, which generates no fal se positives and no true positives, to a situation in

which the classifier always outputs 1, in which case we have both false positive and true positive rates * “receiver operating characteristics”

of 1.
1 _?r \
-
output 1
TP
00—t f

A FP 1
always
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ROC Curves The ROC curveitself is a parametric curve; for each value of x, we plot the pair FP(x), TP(x). The
curve shows the range of possible behaviors of the classifier. It is typically shaped something like this
blue curve; the higher the fal se positive rate we can stand, the higher the rate of detecting true
positives we can achieve.

« “receiver operating characteristics”

always
output 1

parametric
function of x

A FP 1
always
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Often it is useful to compare two different classifiers by comparing their ROC curves. If we're lucky, ROC Curves
then one curve is dways higher than the other. In such a situation, we'd say that the blue curve
dominates the red curve. That means that, no matter what costs apply in our domain, it will be better
to use the blue classifier (because, for any fixed rate of false positives, the blue classifier can achieve
more true positives; or for any fixed rate of true positives, the blue classifier can always achieve fewer

« “receiver operating characteristics”

1_.

false positives). [ideal | —
output 1
If the curves cross, then it will be better to use one classifier in some cost situations and the other T

classifier in other situations.

blue curve
dominates red

A FP 1
always
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Many more issues! Machine learning is a huge field that we have just begun to cover. Even in the context of supervised
learning, there are a variety of other issues, including how to handle missing data, what to do when

* Missing data you have very many negative examples and just afew positives (such as when you're trying to detect

= Many examples in one class, few in other (fraud fraud), what to do when getting y values for your x's is very expensive (you might actively choose
detection) which y's you'd like to have labeled), and many others.

* Expensive data (active learning)

.. If you like this topic, take a probability course, and then take the graduate machine learning course.
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