6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 3.1

Slide3.1.1

In this presentation, we'll take alook at the class of problems called Constraint Satisfaction
Problems (CSPs). CSPs arise in many application areas: they can be used to formulate
scheduling tasks, robot planning tasks, puzzles, molecular structures, sensory interpretation
tasks, etc.

In particular, we'll look at the subclass of Binary CSPs. A binary CSP is described in term of a set
of Variables (denoted V;), adomain of Values for each of the variables (denoted D;) and a set of
constraints involving the combinations of values for two of the variables (hence the name
"binary"). We'll also allow "unary" constraints (constraints on asingle variable), but these can be
seen simply as cutting down the domain of that variable.

We canillustrate the structure of a CSP in adiagram, such as this one, that we call a constraint
graph for the problem.

Constraint Satisfaction Problems

General class of Problems: Binary CSP

Varlable W, with

/-\ values in domain D,

Unary constraints
Jjust cut down domains

Unary constraint arc

.
e (8

Ennstrau
arc

This diagram is called a constraint graph

tip Sept 001

§

. . g Slide3.1.2
Constraint Satisfaction Problems

General class of Problems: Binary CSP of CSP.
Warlable V; with
Unary constraint arc !
'\ /-\ values in domain Dy
Binary [Unary constraints]
constraint just cut down domains
arc ~———/

This diagram is called a constraint graph

Basic problem:

Find a d; < O, for each V; s.1. all constraints satisfied
(finding consistent labeling for variables)

tlp +Sept 00 -2 4

Slide3.1.3

A CSP that has served as a sort of benchmark problem for the field is the so-called N-Queens
problem, which is that of placing N queens on an NxN chessboard so that no two queens can attack
each other.

One possible formulation is that the variables are the chessboard positions and the values are either
Queen or Blank. The constraints hold between any two variables representing positions that are on a
line. The constraint is satisfied whenever the two values are not both Queen.

Thisformulation is actually very wasteful, since it has N2 variables. A better formulation is to have
variables correspond to the columns of the board and values to the index of the row where the
Queen for that column isto be placed. Note that no two queens can share a column and that every
column must have a Queen on it. This choice requires only N variables and also fewer constraints to
be checked.

In general, we'll find that there are important choicesin the formulation of a CSP.

The solution of a CSP involves finding a value for each variable (drawn from its domain) such that
all the constraints are satisfied. Before we look at how this can be done, let's look at some examples

N-Queens as CSP

Classic “benchmark® problem

1 Q
Place N gqueens on an NxN 2 |r a
chessboard sothat none can
attack the other. aje

4]

T 2 a 4

Variables are board positions in NxN chessbkoard
Domains Queen or blank

Constraints Twe positions on a line {vertical,

horizontal, diagonal) cannot both be Q

thp +Sep 00 -3

4

Line labelings as CSP

Domains are set of legal labels for that junction type

Constraints shared lines between adjacent junctions
must have same label.

tlp -Gept 00 -4

+
Label lines in drawing as +
convex {+), concave {-), or
houndary (=).
RV P P e Y
A N N N S
' " b) G
o ot = il e Tl i
.q-\ Cialeis
Variables are line junctions e e friowr joremon fross

4

Slide3.1.5

Scheduling actions that share resourcesis also a classic case of a CSP. The variables are the
activities, the values are chunks of time and the constraints enforce exclusion on shared resources as

well as proper ordering of the tasks.

Graph Coloring as CSP

Pick eolars for map regions,
avoiding celoring adjacent
regions with the same celor

Variables regions

Domains colors allowed

tip +Sept 00 -6

Constraints adjacent regions must have different colors

¢

Slide3.1.7

A very important class of CSPsis the class of boolean satisfiability problems. Oneisgiven a
formula over boolean variablesin conjunctive normal form (a set of ORs connected with ANDS).
The objective isto find an assignment that makes the formulatrue, that is, a satisfying assignment.

SAT problems are easily transformed into the CSP framework. And, it turns out that many
important problems (such as constructing a plan for a robot and many circuit design problems) can
be turned into (huge) SAT problems. So, away of solving SAT problems efficiently in practice

would have great practical impact.

However, SAT isthe problem that was originally used to show that some problems are NP-
complete, that is, as hard as any problem whose solution can be checked in polynomial time. It is

generally believed that there is no polynomial time algorithm for NP-complete problems. That is,
that any guaranteed algorithm has a worst-case running time that grows exponentially with the size
of the problem. So, at best, we can only hope to find a heuristic approach to SAT problems. More on

this later.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.1.4

The problem of labeling the lines in aline-drawing of blocks as being either convex, concave or
boundeary, is the problem that originally brought the whole area of CSPsinto prominence. Waltz's
approach to solving this problem by propagation of constraints (which we will discuss later)
motivated much of the later work in this area.

In this problem, the variables are the junctions (that is, the vertices) and the values are a
combination of labels (+, -, >) attached to the lines that make up the junction. Some combinations of
these labels are physically realizable and others are not. The basic constraint is that junctions that
share aline must agree on the label for that line.

Note that the more natural formulation that uses lines as the variablesis not aBINARY CSP, since
all the lines coming into ajunction must be simultaneously constrained.

Scheduling as CSP

Choose time for activities e.g.
chservations on Hubble
telescope, orterms to take
required classes.

activily

= now oA

Variables are activities

time

Domains sets of start times (or "chunks” of time)

Activities that use same
resource cannot overlap in time

Constraints 1.

2. Preconditions satisfied

tlp +Sept 00 -5 4

Slide3.1.6

Another classic CSPis that of coloring a graph given asmall set of colors. Given a set of regions
with defined neighbors, the problem is to assign a color to each region so that no two neighbors
have the same color (so that you can tell where the boundary is). Y ou might have heard of the
famous Four Color Theorem that shows that four colors are sufficient for any planar map. This

theorem was a conjecture for more than a century and was not proven until 1976. The CSP is not
proving the general theorem, just constructing a solution to a particular instance of the problem.

3-SAT as CSP

Tha original NP-complete prohlem

| |
Find values for boolean (AorBor!C)and ((AorCorB) ...

variables AB,C.... that
satisfy the fermula.

Variables clauses

Domains boolean variable assignments that make

clause true

Constraints clauses with shared boolean variables must

agree on value of variable

tlp +Sept 00 -7 4

http://mathworld.wolfram.com/Four-ColorTheorem.html
http://www.ics.uci.edu/~eppstein/161/960312.html
http://www.ics.uci.edu/~eppstein/161/960312.html

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.1.8
Model-based recognition as CSP
Model-based recognition is the problem of finding an instance of a known geometric model,
Fird gioar madalin described, for example, as aline-boundary in an image which has been pre-processed to identify and
g ; fit lines to the boundaries. The position and orientation of the instance, if any, is not known.
edge image, with
:rlt::;:: Atiditrat kot MODEL IMAGE There are anumber of constraints that need to be satisfied by edges in the image that correspond to
' edges in the model. Notably, the angles between pairs of edges must be preserved.
Variables edges in model
Domains set of edges in image
Constraints angle between model & image edges
must match
1lp - Gept 00 -8 4
Slide3.1.9

Good News I Bad News

So, looking through these examples of CSPs we have some good news and bad news. The good
newsisthat CSPisavery general class of problems containing many interesting practical problems.
The bad news is that CSPs include many problem that are intractable in the worst case. So, we
should not be surprised to find that we do not have efficient guaranteed solutions for CSP. At best,
we can hope that our methods perform acceptably in the class of problems we are interested in. This
will depend on the structure of the domain of applicability and will not follow directly from the
algorithms.

Good News - wvery general & interesting class problems
Bad News = includes NP-Hard (intractable) problems

So, good behavior is a function of domain not the
formulation as CSP.

tip +Sept 00 -9 4

Slide 3.1.10
CSP Example
Let us take a particular problem and look at the CSP formulation in detail. In particular, let's look at
an example which should be very familiar to MIT EECS students.

Given 40 courses (8.01,8.02, 6.840) & 10terms (Fall 1,
Spring1,..... Spring 5). Find a legal schedule. The problem is to schedule approximately 40 courses into the 10 terms for an MEng. For simplicity,
let's assume that the list of coursesis given to us.

tip +Sept 00 - 10 4

Slide3.1.11
CSP Example
The constraints we need to represent and enforce are as follows:

Given 40 courses (8.01,8.02, 6.840) & 10terms {Fall 1,

. The pre-requisites of a course were taken in an earlier term (we assume the list Spring 1. ..., Spring 5). Find a legal schadule.

contains al the pre-requisites).
. Some courses are only offered in the Fall or the Spring term. Constraints Pre-requisites
. Wewant to limit the schedule to a feasible load such as 4 courses aterm.
. And, we want to avoid time conflicts where we cannot sign up for two courses
offered at the same time.

Courses offered on limited terms
Limited number of courses par term

Avoid time conflicts

tlp +Sept 00 - 11 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

CSEP Example Slide 3.1.12

Given 40 courses (8.01,8.02, 6.840) & 10terms (Fall 1,
Spring 1, ..., Spring 5). Find a legal schedule.
Constraints Pre-requisites

Courses offered on limited terms

Limited number of coursas per term

Avoid time conflicts

Note, CSPs are not for expressing (soft) preferences e.g.,
minimize difficulty, balance subject areas, eic.

tlp -Sepe0n - 12 4

Slide3.1.13

One key question that we must answer for any CSP formulation is "What are the variables and what
are the values?" For our class scheduling problem, a number of options come to mind. For example,
we might pick the terms as the variables. In that case, the values are combinations of four courses
that are consistent, meaning that they are offered in the same term and whose times don't conflict.
The pre-requisite constraint would relate every pair of terms and would require that no course
appear in aterm before that of any of its pre-requisite course.

This perfectly valid formulation has the practical weakness that the domains for the variables are
huge, which has a dramatic effect on the running time of the algorithms.

Slide3.1.14
Choice of variables & values

A.Terms? Legal combinations of for example 4
courses (but this is huge set of

B. Term Slots?

subdivide terms into Courses offered during that term
slots a.g. 4 of them

(Fall 1,1) (Fall 1,2)

(Fall1,3) (Fall 1,4)

tip - Sept 00 - 1 4

Slide3.1.15

Another formulation turns things around and uses the courses themselves as the variables and then
uses the terms (or more likely, term slots) as the values. Let's ook at this formulation in greater
detail.

Note that all of these constraints are either satisfed or not. CSPs are not typically used to express
preferences but rather to enforce hard and fast constraints.

Choice of variables & values

VARIABLES DOMAINS

A.Terms? Legal combinations of for example 4
courses (but this is huge set of
values).

tip +Sept 00 - 13 4

One way of avoiding the combinatorics of using 4-course schedules as the values of the variablesis
VARIABLES DOMAINS to break up each term into "term slots" and assign to each term-slot a single course. This
formulation, like the previous one, has the limit on the number of courses per term represented
directly in the graph, instead of stating an explicit constraint. With this representation, we will still
values). need constraints to ensure that the coursesin a given term do not conflict and the pre-requisite
ordering is enforced. The availability of acoursein agiven term could be enforced by filtering the
domains of the variables.

Choice of variables & values

VARIABLES DOMAINS
A.Terms? Legal combinations of for example 4
courses (but this is huge set of
values).
B. Term Slots?
subdivide terms into Courses offered during that term

slots e.g. 4 of them
(Fall 1,1) (Fall 1,2)
(Fall1,3) (Fall 1,4)

C. Courses? Terms or term slots {Term slots allow
exprassing constraint on limited number of
of courses /term.)

tlp - Sept 00 - 16 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Constraints Slide3.1.16

Use courses as variables and term slots as values.
term

One constraint that must be represented is that the pre-requisites of a class must be taken before the

 befare actual class. Thisis easy to represent in this formulation. We introduce types of constraints called
PrataqualtE @ @ "term before" and "term after" which check that the values assigned to the variables, for example,
Fo irs of co that H H
x e e T 6.034 and 6.001, satisfy the correct ordering.
:?t?r Note that the undirected links shown in prior constraint graphs are now split into two directed links,

each with complementary constraints.

tlp - Sept 00 - 16 q

Slide3.1.17 Constraints

The constraint that some courses are only offered in some terms simply filtersillegal term values Uss coursasas variabies and farm 5'?:;”““'”“'

from the domains of the variables. befare

Prerequisite » @x@ For pairs of courses that

must be ordered

{ term
after

Courses offered only in some terms ® Filter domain

tip +Sept 00+ 17 4

Constraints Slide3.1.18

Lse courses;as varlables anclenn S'Sfm“"a'”es' The limit on courses to be taken in aterm argues for the use of term-slots as values rather than just

(befare terms. If we use term-slots, then the constraint isimplicitly satisfied.
Prerequisite » @x@ For pairs of courses that
must be ordered.
(term
arter

Courses offered anly in some terms ® Filter domain

r slot not equal
Limit # courses =» O_‘O Use term-siots only once

for all pairs of vars

tip +Sept 00 - 18 4

Slide3.1.19 Constraints

Avoiding time conflicts is also easily represented. If two courses occur at overlapping times then we Use coursas:as varlablasiand larm slofs as values,

term

place a constraint between those two courses. If they overlap in time every term that they are given, before
we can make sure that they are taken in different terms. If they overlap only on some terms, that can B isite @ @
. . rerequisite For pairs of courses that
also be enforced by an appropriate constraint. x B s
(term
after

Courses offered anly in some terms ® Filter domain

slot not equal
r q

Limit # courses = Use term-siots oniy onee
far all pairs of vars

o 3 r.terrn not equal
Avoid time conflicts =» O—O For pairs offered at same
or overiapping times

tlp -t 00 - 18 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 3.2

Slide3.2.1 Solving CSPs

We now turn our attention to solving CSPs. We will see that the approaches to solving CSPs are
some combination of constraint propagation and search. We will look at these in turn and then

look at how they can be profitably combined. Solving CSPs involves some combination of:

1. Constraint propagation, to eliminate values that could
not be part of any solution

2. Search, to explore valid assignments

tp ~Sepr 00+ 1 4

Slide3.2.2
Constraint Propagation [(aka Arc Consistency)

The great success of Waltz's constraint propagation algorithm focused peopl€'s attention on CSPs.

Arc consistency Iimina_ies values from domain of variable that can The basic ideain constraint propagation is to enforce what is known as"ARC CONSISTENCY",
Nigvarbs;parlot@ cunsistsntsoutan. that i, if one looks at a directed arc in the constraint graph, say an arc from V; to V}, we say that this
Vi =V arcisconsistent if for every value in the domain of V;, there exists some vaue in the domain of VJ-

Directed are (v, Vi) s arc consistent i that will satisfy the constraint on the arc.

¥xeD; 3yeD,; suchthat (x.y) is allowed by the constraint on the arc

tlp -Gept 00 -2 4

Side3.2.3
Constraint Propagation {aka Arc Consistency)

Suppose there are some values in the domain at the tail of the constraint arc (for V;) that do not have
any consistent partner in the domain at the head of the arc (for Vj). We achieve arc consistency by
dropping those values from D;. Note, however, that if we change D;, we now have to check to make
sure that any other constraint arcs that have D; at their head are still consistent. It isthis

phenomenon that accounts for the name "constraint propagation”. Directed arc (V. V) is arc consistent if
wxeD; 3y=D) suchthat (x.y) is allowed by the constraint on the arc

Arc consistency eliminates values from domain of variable that can
never be part of a consistent solution.

.Y

\We can achieve consistency on arc by deleting values form D,
{domain of variable at fail of constraint arc) that fail this condtion.

tlp -Sepe 00 -3 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Sliide3.2.4
Constraint Propagation {aka Arc Consistency)

What is the cost of this operation? In what follows we will reckon cost in terms of "arc tests": the

Arc cansistency eliminates values from domain of variable that can number of times we have to check (evaluate) the constraint on an arc for a pair of valuesin the
nEver b paratacansistantisoltian. variable domains of that arc. Assuming that domains have at most d elements and that there are at
vV, =V most e binary constraints (arcs), then a simple constraint propagation algorithm takes O(ed3) arc

testsin the worst case.
Directed arc (;, V) is arc consistent if

wxsHidysPysuchithat by isalimved by theconstraint ondhe ar It iseasy to see that checking for consistency of each arc for all the valuesin the corresponding

domains takes O(d?) arc tests, since we have to look at all pairs of valuesin two domains. Going
through and checking each arc once requires O(ed?) arc tests. But, we may have to go through and
look at the arcs more than once as the deletions to a node's domain propagate. However, if we look
Assume domains are size at most d and there are e binary at an arc‘only Whgn one of itsvaria?ble domains has changgd (by deleting some entry),. thenno arc
constraints. can require checking more than d times and we have the final cost of O(ed3) arc testsin the worst
case.

\We can achieve consistency on arc by deleting values form D,
{domain of variable at fail of constraint arc) that fail this condtion.

A simple algorithm for are censistency is O(ed?) — note that just verifying
arc consistency takes O(d?) for each are.

tlp -Gept 00 -4 4

Slide3.2.5
Constraint Propagation Example

Let'slook at atrivial example of graph coloring. We have three variables with the domains
indicated. Each variable is constrained to have values different from its neighbors. Graph Coloring
Initial Damains are indicated

-Different-color constraint

tlp +Sept 00 -5 4

Slide3.2.6
Constraint Propagation Example

We will now simulate the process of constraint propagation. In the interest of space, we will deal in
«Different-colar constraint this example with undirected arcs, which are just a shorthand for the two directed arcs between the
variables. Each step in the simulation involves examining one of these undirected arcs, seeing if the
arc is consistent and, if not, deleting values from the domain of the appropriate variable.

Graph Coloring
Initial Domains are indicated

Arc examined |Value deleted

Each undirected constraint arc is really twa directed constraint arcs, the

effects shown above are from examining BOTH arcs.
1lp +Sept 00 6 4

Slide3.2.7 y)
Constraint Propagation Example

We start with the V-V, arc. Note that for every valuein the domain of V, (R, G and B) thereiis

-Different-calar constraint

some value in the domain of V,, that it is consistent with (that is, it is different from). So, for RinV, Graph Coloring
thereisaGinV,, for GinVq thereisanRinV, and for B in V4 thereiseither Rand Gin V.. el Domainsareindicaled
Similarly, for each entry in V, thereisavalid counterpart in V4. So, the arc is consistent and no
changes are made. Arc examined |Value deleted ¥
Wy =Vy none @

tlp +Sept 00 -7 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.2.8
Constraint Propagation Example

We moveto V-V The situation hereis different. While R and B in V| can co-exist with the G in
V3, not so the G in V4. And, so, weremove the G from V. Note that the arc in the other direction is
\y consistent.

=>Different-color constraint

Graph Coloring
Initial Damains are indicated V2

Arc examined |Value deleted

V1
Wy =V, none o 3
MY W <>

tlp -Sepe 00 -3 4

Slide3.2.9
Constraint Propagation Example

Moving to V,-V 3, we note similarly that the G in V, has no valid counterpart in V3 and so we drop
it from V,'s domain. Although we have now looked at all the arcs once, we need to keep going since
we have changed the domains for V4, and V.

-Different-color constraint

Graph Coloring
Initial Damains are indicated

Arc examined |Value deleted Yy
Wy =V, none @
V- V(@) V\’a
Va=V3 Y¥3(6)

tip +Sept 00 -9 4

Slide3.2.10
Constraint Propagation Example

Looking at V1-V, again we note that R in V', no longer has avalid counterpart in V5 (since we have
deleted G from V,) and so we need to drop R from V.

i ~-Different-calar constraint
Graph Coloring g

Initial Domains are indicated

Vs
Arc examined |Value deleted Yy
V=V, none °
V=V, V,(G) V\fa
Vim¥s Va(8)
Vi Ve Yi(R)

tip +Sept 00 - 10 4

Slide3.2.11 .)
Constraint Propagation Example

Wetest V4-V3 and it is consistent.

i -Different-calar constraint
Graph Coloring

Initial Domains are indicated

Arc examined |Value deleted Yy
Wy =Vy none o
V=V, V,(B) VVa
Vamdla W5(G]
V=V, Vi(R)
V= Vs none

tlp +Sept 00 - 11

¢

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.2.12
Constraint Propagation Example

Wetest V,-V3and it is consistent.

=-Different-color constraint

Graph Coloring
Initial Domains are indicated We are done; the graph is arc consistent. In general, we will need to make one pass through any arc
whose head variable has changed until no further changes are observed before we can stop. If at any

point some variable has an empty domain, the graph has no consistent solution.

Arc examined |Value deleted Y
Wy =V, none o
V=V, V,(B) V\fa
=y VL (E)
Vi—Vs Yi(R]
W=y none
Vo= Vg none

tlp - Sept 00 - 12 4

Slide3.2.13 . g .
But, arc consistency is not enough in general
Note that whereas arc consistency is required for there to be a solution for a CSP, having an arc- '
i I o . - - Graph Coloring
consistent solution is not sufficient to guarantee a unique solution or even any solution at all. For (R.6) arc consistent but no
example, thisfirst graph is arc-consistent but there are NO solutions for it (we need at least three - solutions
colors and have only two). e
lp = Sept 00 - 12 4
Slide3.2.14

But, arc consistency is not enough in general

Graph Coloring This next graph is also arc consistent but there are 2 distinct solutions: BRG and BGR.
‘B arc cansistent but ho

- solutions
<>

arc consistent but 2
m solutions BR.G ;

BGR.
Cb.m

tip - Sept 00 - 1 4

Slide3.2.15 : . _
But, arc consistency is not enough in general

This next graph is also arc consistent but it has a unique solution, by virtue of the special constraint

. Graph Colorin
between two of the variables. i g (e arc consistent but no

m.m solutions

arc consistent but 2

= LTI
113.133

arc consistent but 1

@ solution
—

- Assume B, R not
@ @ allowed

tlp - Sept 00 - 16 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

3 " i Slide 3.2.16
But, arc consistency is not enough in general
Graph Colorin
3 = @ arc consistent but NO
- solutions
Goo—CR.e
arc consistent but 2
solutions B.R,G ;
2
G5 G.eD
arc consistent but 1
lution
(g —
- B, R not allowed
GeO>—CGeD
Need to do search to find solutions (if any)
1p - Sepe 00 - 16 4

Slide3.2.17

How does one search for solutions to a CSP problem? Any of the search methods we have studied is
applicable. All we need to realize is that the space of assignments of values to variables can be
viewed as atree in which all the assignments of values to the first variable are descendants of the
first node and all the assignments of values to the second variable form the descendants of those
nodes and so forth.

The classic approach to searching such atreeis called "backtracking", which is just another name
for depth-first search in this tree. Note, however, that we could use breadth-first search or any of the
heuristic searches on this problem. The heuristic value could be used to either guide the search to
termination or biasit to adesired solution based on preferences for certain assignments. Uniform-
Cost and A* would make sense also if there were a non-uniform cost associated with a particular
assignment of avalue to a variable (note that thisis another (better but more expensive) way of
incorporating preferences).

However, you should observe that these CSP problems are different from the graph search problems
we looked at before, in that we don't really care about the path to some state but just the final state
itself.

Searching for solutions — backtracking (BT) Slide3.2.18

In general, if there is more than one value in the domain of any of the variables, we do not know
whether there is zero, one, or more than one answer that is globally consistent. We have to search
for an answer to actually know for sure.

Searching for solutions — backtracking (BT)

When we have too many values in domain {and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pura backiracking (depth-first search).

V, assignments

W, assignments

W, assignments

tip +Sept 00+ 17

4

When we have too many values in domain {and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure backtracking (depth-first search).

W, assignments

', assignments

g @assignments:”

Inconsistent
with ¥, = R

Backup at
inconsistent
assignment

tip +Sept 00 - 18

Slide3.2.19

So, we consider assigning V,=G, which is consistent with the value for V. We then move to V3=R.
Since we have a constraint between V, and V3, we have to check for consistency and find it is not

consistent, and so we backup to consider another value for V.

If we undertake aDFS in this tree, going left to right, we first explore assigning R to V; and then
moveto V, and consider assigning R to it. However, for any assignment, we need to check any
constraints involving previous assignments in the tree. We note that V,=R isinconsistent with V=R

and so that assignment fails and we have to backup to find an alternative assignment for the most
recently assigned variable.

Searching for solutions — backtracking (BT)

When we have too many values in domain {and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest appreach is pure backtracking (depth-first search).

W, assignments

', assignments

i, assignmerts:

Inconsistent
with ', = R

Backup at
inconsistent
assignment

tlp +Sept 00 - 18 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Searching for solutions — backtracking {BT) Slide3.2.20
When we have too many values in domain {(and/or constraints are But V=G isinconsistent with V,=G, and so we have to backup. But there are no more pending
weak) arc consisiency doesn't do much, sowe need lo search. valuesfor V3 or for V, and so we fail back to the V, level.
Simplest approach is pura backiracking (depth-first search).
W, assignments
v wsgnments | R 22 RS R
Vi aaalgnmenta‘:"-
inconsistent \ncom-;mtem
Wit Ny = R with v, = G
Backup at
incansistent
assignment
1p - Sepe 00 - 20 4
Slide3221 Searching for solutions — backtracking (BT)
The process continues in that fashion until we find a solution. If we continue past the first success, When we have too many values in domain (and/or constraints are
we can find all the solutions for the problem (two in this case). weak) arc consistency doesn't do much, se we need to search.
Simplest approach is pura backiracking (depth-first search).
Y, assignments
v assgnments | R 2o R R
g assignments
‘”ED”SI';tE”t \ncom;‘\ﬁtem
Wi =R with , = G
Backup at
inconsistent
assignment
1lp +Sept 00 - 31 4
Slide3.2.22

Combine Backtracking & Constraint Propagation

We can use some form of backtracking search to solve CSP independent of any form of constraint
propagation. However, it is natural to consider combining them. So, for example, during a
backtracking search where we have a partial assignment, where a subset of all the variables each has
unique values assigned, we could then propagate these assignments throughout the constraint graph
Usa canstraint propagation (arc-consistency) to propagate the sffact of to obtain reduced domains for the remaining variables. Thisis, in general, advantageous since it

this tentative assignment, i.e., eliminate values inconsistent with current decreases the effective branching factor of the search tree.

values.

A node in BT tree is partial assignment in which the domain of each
variable has been set (tentatively) to singleton set.

tip - Sept 00 - 72 4

Slide3.2.23
Combine Backtracking & Constraint Propagation

But, how much propagation should we do? Is it worth doing the full arc-consistency propagation we

described earlier? . . } . o !
A node in BT tree is partial assignment in which the domain of each

variable has been set (tentatively) to singleton set.

Use constraint propagation (arc-consistency) te propagate the effect of
this tentative assignment, i.e., eliminate values inconsistent with current
values.

Question: How much propagation to do?

tlp +Sept 00 - 22 4

Combine Backtracking & Constraint Propagation

A node in BT tree is partial assignment in which the domain of each
variable has been set (tentatively) to singleton set.

Use constraint propagation {arc-consistency) to propagate the effect of

this tentative assignment, i.e., eliminate values inconsistent with current
values.

Question: How much propagation to do?

Answer: Not much, just local propagation from domains with
unigue assignments, which is called forward checking
(FC). This eonclusian is not necessarily obvious, but it
generally holds in practice.
1lp - Sepe 00 - 34
Slide 3.2.25

Let's step through a search that uses a combination of backtracking with forward checking. We start

by considering an assignment of V,=R.

Backtracking with Forward Checking (BT-FC)

\When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

i
A&

tip - Sept 00 - 36

Slide3.2.27

But, when we propagate to V 3 we see that there are no remaining valid values and so we have found
an inconsistency. We fail and backup. Note that we have failed much earlier than with simple

backtracking, thus saving a substantial amount of work.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.2.24

The answer is USUALLY no. It is generally sufficient to only propagate to the immediate neighbors
of variables that have unique values (the ones assigned earlier in the search). That is, we eliminate
from consideration any values for future variables that are inconsistent with the values assigned to
past variables. This processis known as forward checking (FC) because one checks values for
future variables (forward in time), as opposed to standard backtracking which checks value of past
variables (backwards in time, hence back-checking).

When the domains at either end of a constraint arc each have multiple legal values, odds are that the
constraint is satisfied, and so checking the constraint is usually a waste of time. This conclusion
suggests that forward checking is usually as much propagation as we want to do. Thisis, of course,
only arule of thumb.

Backtracking with Forward Checking {(BT-FC)

\When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

W, assigniments

W, assigniments

Wy assigniments

tip - Sept 00 - 35 4

Slide 3.2.26

We then propagate to the neighbors of V, in the constraint graph and eliminate any values that are
inconsistent with that assignment, namely the value R. That leaves us with the value G in the
domains of V, and V3. So, we make the assignment V,=G and propagate.

Backtracking with Forward Checking (BT-FC)

\then examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

We have a conflict Vi
whenever a domain v
2

becomes empty. NG

tlp - Sept 00 - 77 (E

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Backtracking with Forward Checking {BT-FC) Slide3.2.28

When examining assignment V=d,, remove any values inconsistent We now consider V=G and propagate.

with that assignment from neighboring domains in coenstraint graph.
___________________ e T
\/1 assignments G
Wy assignments

W, assigniments

When backing up, need to W
restore domain values, @ 1

since deletions were done A - %
to reach consistency with 3
tentative assignments @ @
considered during search

tlp - Sept 00 - 3 4

Slide3229 Backtracking with Forward Checking {BT-FC)

\When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

__________________ G- D-mmmm e
W, assigniments G
______________________ C D

W, assigniments

That eliminates G from V, and V.

Wy assigniments

tip +Sept 00 - 28 4

Backtracking with Forward Checking (BT-FC) Slide3.2.30

When examining assignment V=d,, remove any values inconsistent We now consider V,=R and propagate.

with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

tip +Sept 00 - 30 4

Slide3.2.31 Backtracking with Forward Checking {BT-FC)

\then examining assignment V,=d,, remove any values inconsistent

The domain of V3 is empty, so we fail and backup.
with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

tlp +Sept 00 - 31 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Backtracking with Forward Checking {BT-FC) Slide3.2.32

When examining assignment V,=d,, remove any values inconsistent So, we move to consider V=B and propagate.
with that assignment from neighboring domains in coenstraint graph.

W, asslgnments

W, assigniments

W, assigniments

tlp - Gept 00 - 32 q

Slide32.33 Backtracking with Forward Checking {BT-FC)
This propagation does not delete any values. We pick V,=R and propagate. When examining assignment V=d,, ramove any values inconsistent
with that assignment from neighboring domains in constraint graph.

W, assigniments

W, assigniments

Wy assigniments

tip +Sept 00 - 33 4

Backtracking with Forward Checking (BT-FC) Slide3.2.34

When examining assignment V=d,, remove any values inconsistent This removes the R values in the domains of V; and V3.
with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

tip - Sept 00 - 34 4

Backtracking with Forward Checking (BT-FC)

Slide3.2.35
We pick V3 = G and have a consistent assignment. When examining assignment V,=d,, remove any values incensistent
with that assignment from neighboring domains in constraint graph.

W, assigniments

Y, assignments

Y, assignments

tlp - Sept 00 - 35 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Backtracking with Forward Checking {BT-FC) Slide 3.2.36

When examining assignment V.=d,, remove any values inconsistent We can continue the process to find the other consistent solution.

with that assignment from neighboring domains in coenstraint graph.

W, asslgnments

W, assigniments

W, assigniments

tlp - Sept 00 - 3 4

Slide3.2.37 Backtracking with Forward Checking (BT-FC)
Note that when doing forward checking there is no need to check new assignments against previous When examining assignment V=d,, remove any values inconsistent
assignments. Any potential inconsistencies have been removed by the propagation. BT-FC is usually with that assignment from neighboring demains in constraint graph.
preferable to plain BT because it eliminates from consideration inconsistent assignments once and

for all rather than discovering the inconsistency over and over again in different parts of the tree. For v, assignments
example, in pure BT, an assignment for V3 that is inconsistent with avalue of V, would be
"discovered" independently for every value of V,. Whereas FC would delete it from the domain of

V3 right away. W, assignments

W, assigniments

V.
No need to check a i Generally preferable
pravious assignments ' - y, lopure BT

tip +Sept 00 - 37 4

6.034 Notes: Section 3.3

Side33.1 BT-FC with dynamic ordering

We have been assuming that the order of the variablesis given by some arbitrary ordering. Tratitional backiracking usas fixsd ardering of variablas & valuas, .9
However, the ord_er of the variables (and values) can h_ave asubstantl_al effect on the co;t of finding random crder or place variablas wih many constrainis first. ok
the answer. Consider, for example, the course scheduling problem using courses given in the order

that they should ultimately be taken and assume that the term values are ordered as well. Then a You can usually da better by cheocsing an order dynamically as the

depth first search will tend to find the answer very quickly. search proceeds.

Of course, we generally don't know the answer to start off with, but there are more rational ways
of ordering the variables than alphabetical or numerical order. For example, we could order the
variables before starting by how many constraints they have. But, we can do even better by
dynamically re-ordering variables based on information available during a search.

tlp - Spring 02 -1 (E

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.3.2
BT-FC with dynamic ordering

For example, assume we are doing backtracking with forward checking. At any point, we know the
Traditional backiracking uses fixed ordering of variables & values, e.g., size of the domain of each variable. We can order the variables below that point in the search tree so
random order or place variables with many constraints first. that the most constrained variable (smallest valid domain) is next. Thiswill have the effect of

T TrS——— reducing the average branching factor in the tree and also cause failures to happen sooner.

search proceeds.

= Most consfrained variable
when doing forward-checking, pick variable with fewest legal
values to assign next (minimizes branching factor)

tip - Spring 02 -2 (E

Slide3.3.3
BT-FC with dynamic ordering

Furthermore, we can count for each value of the variable the impact on the domains of its neighbors,
for example the minimum of the resulting domains after propagation. The value with the largest Tradtional backiracking uses fixed ordering of variables & values, e.g..
minimum resulting domain size (or average value or sum) would be one that least constrains the random order or place variables with many constraints first.

remaining choices and is| likely to tofailure. You can usually do better by choosing an order dynamically as the
L i . . search proceeds.
Of course, value ordering is only worth doing if we are looking for a single answer to the problem.

If wewant all answers, then all values will have to be tried eventualy. *Mogt canstialned variable

when doing forward-checking, pick variable with fewest legal
values to assign next (minimizes branching factor)

= Least constraining value
choose value that rules out the fewest values from neighhoring
domains

tip +Spring 02 -3 4

Slide3.34
BT-FC with dynamic ordering
This combination of variable and value ordering can have dramatic impact on some problems.

Tradttional bacldracking uses fixed ordering of variables & values, e.g.,
randem order or place variables with many constraints first.

You can usually do better by choosing an order dynamically as the
search proceeds.

= Most constrained variable
when doing forward-checking, pick variable with fewest legal
values to assign next (minimizes branching factor)

- Least constraining value
choose value that rules out the fewest values from neighhoring
domains

E.g. this comhination improves feasible n-queens performance from
about n = 30 with just FC to about n = 1000 with FC & ordering.

tip Spring 07 4 4

Slide3.3.5 Colors: R, G, B, ¥

A=Green
B=Blua
C=Red

This example of the 4-color map-coloring problem illustrates a simple situation for variable and
value ordering. Here, A is colored Green, B is colored Blue and C is colored Red. What country
should we color next, D or E or F?

Red, Blue,

Which country should we color next —

What color should we pick for it? -+

tp +Spring 02 -5 4

Colors: R, G,B, ¥
A=Graen

B=Blue

C=Red

Red, Blue,

Which country sheuld we colornet — E maost-constrained variable
(smallest domain)

What color should we pick for it?

tip - Spring 02 -6

4

Slide3.3.7

By picking RED, we keep open the most options for D and F, so we pick that.

Incremental Repair {min-conflict heuristic)

1. Initialize a candidate solution using "greedy” heuristic — get
solution "near” correct one.

2. Select avariable in conflict and assign it a value that minimizes
the number of conflicts (beak ties randomly).

Can use this heuristic as part of systematic backtracker that uses
heuristics to do value ordering or in a local hill-climber (without backup).

sec
(3parc 1) qpp L
10 9 Performance on n-queens
(with good initial guesses)
1
107
102

100 102 10° 10+ 105 102 SZE(

tip - Spring 02 -3

¢

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide3.3.6

Well, E is more constrained (has fewer) legal values so we should try it next. Which of E's values
should we try next?

Colors: R, G,B, ¥
A=Graen

Red, Blue,

Which country should we colornet — E mosi-constrained variable
{smallest domain}

RED least-constraining value
{eliminates fewest values fram

neighboring domains)

What color should we pick for it?

tip +Spring 02 -7 4

Slide3.3.8

All of the methods for solving CSPs that we have discussed so far are systematic (guaranteed
searches). More recently, researchers have had surprising success with methods that are not
systematic (they are randomized) and do not involve backup.

The basic ideaisto do incremental repair of anearly correct assignment. Imagine we had some
heuristic that could give us a"good" answer to any of the problems. By "good" we mean one with
relatively few constraint violations. In fact, this could even be arandomly chosen solution.

Then, we could take the following approach. Identify arandom variable involved in some conflict.
Pick anew value for that variable that minimizes the number of resulting conflicts. Repeat.

Thisisatype of local "greedy" search algorithm.

There are variants of this strategy that use this heuristic to do value ordering within a backtracking
search. Remarkably, this type of ordering (in connection with a good initial guess) leads to
remarkable behavior for benchmark problems. Notably, the systematic versions of this strategy can
solve the million-queen problem in minutes. After this, people decided N-queens was not
interesting...

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 3.3.9 Min-conflict heuristic

The pure "greedy" hill-climber can readily fail on any problem (by finding alocal minimum where

any change to asingle variable causes the number of conflicts to increase). We'll look at thisabit in The pure hill climber (without backtracking) can get stuck in
the problem set. local minima. Can add random moves to attempt getting out

of minima — generally quite effective. Can also use weights
There are several ways of trying to deal with local minima. One is to introduce weights on the on violated constraints & increase weight every cycle it
violated constraints. A simpler oneisto re-start the search with another random initial state. Thisis remains violated.

the approach taken by GSAT, arandomized search process that solves SAT problemsusing a
similar approach to the one described here.

GSAT
GSAT's performance is nothing short of remarkable. It can solve SAT problems of mind-boggling
complexity. It has forced a complete reconsideration of what it means when we say that a problemis
"hard". It turns out that for SAT, almost any randomly chosen problem is"easy". There are really Randomized hill climber used to solve SAT problems. One
hard SAT problems but they are difficult to find. Thisis an area of active study. of the most effective methods ever found for this problem

tip -+ Spring 02 -3 ¢

e Slide 3.3.10
GSAT as Heuristic Search
GSAT can be framed as a heuristic search strategy. Its state space is the space of al full assignments

* State space: Space of all full assignments to variables to the variables. Theinitial stateis arandom assignment, while the goal stateis any assignment that

* Initial state: A random full assignment satisfies the formula. The actions available to GSAT are simply to flip one variablein the
= Goal state: A satisfying assignment assignment from true to false or vice-versa. The heuristic value used for the search, which GSAT
« Actions: Flip value of one variable in current assignment tries to maximize, is the number of satisfied clauses (constraints). Note that this is equivalent to

» Heuristic: The number of satisfied clauses (constraints); we minimizing the number of conflicts, that is, violated constraints.

want to maximize this. Alternatively, minimize the number
of unsatisfied clauses (constraints).

tlp + Spring 02 - 10 4

Slide3.3.11

GSAT(F)
Here we see the GSAT algorithm, which isvery simple in sketch. The critical implementation . .
challenge s that of finding quickly the variable whose flip maximizes the score. Note that there are * Fori=1to Maxtries
two user-specified variables: the number of times the outer loop is executed (MAXTRIES) and the * Select a complete random assignment A
number of times the inner loop is executed (MAXFLIPS). These parameters guard against local * Score = number of satisfied clauses
minimain the search, simply by starting with a new, randomly chosen assignment and trying a » For j=1 to Maxflips

different sequence of flips. As we have mentioned, this works surprisingly well. —If (A satisfies all clauses in F) return A

—Else flip a variakle that maximizes score

—Flip a randemly chosen variakle if no variable flip
increases the score.

tlp « Spring 02 +11 4

Slide3.3.12
WALKSAT(F)
. . An even more effective strategy turns out to add even more randomness. WALKSAT basically
» For i=1 to Maxtries

performs the GSAT algorithm some percentage of the time and the rest of the time it does arandom

» Select a complete random assignment A walk in the space of assignments by randomly flipping variablesin unsatisfied clauses (constraints).
* Score = number of satisfied clauses
« For j=1 to Maxflips It'sabit depressing to think that such simple randomized strategies can be so much more effective

than clever deterministic strategies. There are signs at present that some of the clever deterministic

= If A satisfies all clauses in F) return & strategies are becoming competitive or superior to the randomized ones. The story is not over.

—Else
- With probability p » GSAT */
» flip a variable that maximizes score

» Flip a randomly chosen variable if no variable flip
increases the score.

— With probability 1-p /* Random Walk */
» Pick a randem unsatisfied clause C
» Flip a randemly chosen variable in C

tlp - Spring 0Z +12 (E

