6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 2.4

Classes of Search

Slide2.4.1
So far, we have looked at three any-path algorithms, depth-first and breadth-first, which are Class Name Operation
uninformed, and best-first, which is heuristically guided. Any Path Depth-First Systemalic exploration of whole tree
Uninformed Breadth-First until a goal node is found.
Any Path Best-First Uses heuristic measure of goodness
Informed of & node, .. estimated distance to goal

wespigee

Slide2.4.2
Classes of Search
Class — Operation Now, we will look at the first algorithm that searches for optimal paths, as defined by a"path
Y- FY—— e length" measure. This uniform cost algorithm is uninformed about the goal, that is, it does not use
ny Fal epth-rirs yslematc exploration ofwhale free ot i
Uninformed Breadth-First until a goal node is found. any heuristic guidance.
Any Path Best-First Uses heuristic measure of goodness
Informed of anode, e.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds “shortest” path.

Wiz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.3
Simple Search Algorithm
Thisisthes mpI_e algorithm_ we have been using to iIIust_rate the various search&e_. Asbefore, we will ?hsealf;re ﬂoljffiaeslg;mphatﬂhogsg ?ﬁ(:n ; s;freefelni fsf}:;;'irfftaf;'eétﬁ ge, (XXE AS)
see that the key issues are picking paths from Q and adding extended paths back in. L;S be 3 sl of seerch nods, ¢, (0B A §] (GBAS) p__) 5
Let S be the start state
1. Initialize Q with search node () as only entry; set Visited= (S)
2. I Qis empty, fail. Else, pick some partial path N from Q
3. [state{N} is a goal, return N {we've reached a goal)
4. (Otherwise) Remove N from Q
5. Find all the children of state{N) net in Visited and create all the one-step
extensions of N to each descendant.
6. Add all the extended paths to Q; add children of state(N) to Visited
7. Gotostep2.
Critical decisions:
Step 2: picking N from Q
Step 6: adding extensions of Nte O v f
Slide2.4.4
Simple Search Algorithm
A search node is a path from seme state Xto the slartstate, e.g, ([(BAS) We will continue to use the algorithm but (as we will see) the use of the Visited list conflicts with

The state of a search node is the most recent state of the path, e.g. X

Let U be alist of search nodes, eg (KBAS) (CBAS))

Let S be the start state

Initialize Q with search node (S) as only entry;set-¥isited="{3")
If Q is empty, fail. Else, pick some search node N from Q

optimal searching, so we will leave it out for now and replace it with something else later.

If state(N) is a goal, return N (we've reached a goal) Don’t use Visited
{Otherwise) Remove N from Q for Optimal Search

Find all the children of state{N) not in-isited-and-create all the one-step
extensions of N to each descendant.

6. Add all the extended paths to Q; add-children-ofatate(Pi-to-Visited——
7. Gotostep2.

o ol Ky 2

Critical decisions:
Step 2: picking N from Q

Step 6: adding extensions of Nto Q e Sping 02+ 4 4

Slide2.4.5
Why not a Visited list?
Why can't we use a Visited list in connection with optimal searching? In the earlier searches, the use
of the Visited list guaranteed that we would not do extrawork by re-visiting or re-expanding states.
It did not cause any failures then (except possibly of intuition). + Forthe any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

wespmiees

Slide2.4.6

Why not a Visited list?

But, using the Visited list can cause an optimal search to overlook the best path. A simple example

will illustrate this.

+ Forthe any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

« However, the Visited list in connection with optimal searches can cause us
to miss the best path.

wespmize

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.7
Why not a Visited list?
Clearly, the shortest path (as determined by sum of link costs) to G is (SA D G) and an optimal
search had better find it.

For the any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

However, the Visited list in connection with UC can cause us to miss the

best path.
The shortest path from S to G is
O (SADS)
2"@—-@
G

et of

Slide2.4.8
Why not a Visited list?
However, on expanding S, A and D are Visited, which means that the extension from A to D would

never be generated and we would miss the best path. So, we can't use a Visited list; nevertheless, we

For the any-path algorithms, the Visited list would not cause us to fail to still have the problem of multiple paths to a state leading to wasted work. We will deal with that
find a path when one existed, since the path to a state did not matter. issue later, since it can get a bit complicated. So, first, we will focus on the basic operation of
Howaver, the Visited list in connection with UC can cause us to miss the optimal searches.

best path.

The shortest path from Ste G is
O (SADG)
H O, - But, on extending (S}, A and D
9 © would be added to Visited list and
so (S A) would not be extended to
(SAD)

s

Slide2.4.9
Implementing Optimal Search Strategies
The first, and most basic, algorithm for optimal searching is called uniform-cost search. Uniform-
cost isalmost identical in implementation to best-first search. That is, we aways pick the best node
on Q to expand. The only, but crucial, difference is that instead of assigning the node value based on Pick best (measured by path length) slement of Q
the heuristic value of the node's state, we will assign the node value as the "path length” or "path Add path exlensions amywhere in Q1

cost", ameasure obtained by adding the "length" or "cost" of the links making up the path.

Uniform Cost:

tp = Spiing 02+ 4 4
Slide 2.4.10
Uniform Cost
To reiterate, uniform-cost search uses the total length (or cost) of a path to decide which one to
expand. Since we generally want the least-cost path, we will pick the node with the smallest path
Like best-first except that it uses the “total length (cost)” of a path instead cost/length. By the way, we will often use the word "length” when talking about these types of
of a heuristic value for the state. searches, which makes intuitive sense when we talk about the pictures of graphs. However, we mean
Each link has a “length” or “cost” (which is always greater than 0} any cost measure (like length) that is positive and greater than 0 for the link between any two states.

We want “shortest” or “least cost” path

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.11

Uniform Cost

The path length is the SUM of the length associated with the links in the path. For example, the path

from Sto A to C hastotal length 4, sinceit includes two links, each with edge 2.

+ Like hest-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.

+ Eachlink has a “length” or “cost” (which is always greater than 0}

- We want “shortest” or “least cost” path

Total path cost:
(SAC) 4

oo g

Slide2.4.12
Uniform Cost
The path from Sto B to D to G haslength 8 since it includes links of length 5 (S-B), 1 (B-D) and 2
(D-G).
+ Like hest-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.
+ Each link has a “length” or “cost” (which is always greater than 0)
- We want “shortest” or “least cost” path
Total path cost:
(SAC) 4
(SBDG) 8
e Sprng 02+ 12 4
Slide2.4.13
Uniform Cost
Similarly for S-A-D-C.
» Like best-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.
+ Each link has a “length” or “cost” (which is always greater than 0)
+ We want “shortest” or “least cost” path
Total path cost:
(SAC) 4
(SBDG) 8
(SADC) 9
- Spring02 - 15 4
Slide2.4.14

Uniform Cost
Given this, let's simulate the behavior of uniform-cost search on this simple directed graph. As usual
we start with a single node containing just the start state S. This path has zero length. Of course, we
choose this path for expansion.

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Eal

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.15

Uniform Cost
This generates two new entries on Q; the path to A has length 2 and the one to B has length 5. So,

we pick the path to A to expand.

Pick best (by path length) element of Q; Add path extensions anywhere in Q

-
=1E=}
0

2 [pPASIGBY

§

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

oot g

Uniform Cost

Pick best (by path length) element of Q; Add path extensions anpwhere in Q

Q

03}

2ASIEBS)
“CASIEDASIBBS)

w M|A

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Slide2.4.16

This generates two new entries on the queue. The new path to C is the shortest path on Q, so we
pick it to expand.

e Spring 02+ 15 4
Slide2.4.17
Uniform Cost
Since C has no descendants, we add no new paths to Q and we pick the best of the remaining paths,
which is now the path to B.

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q

11 |08

2 |2AS)5BY

3 |4CASEDAS)BEBS)
4 [EDAS)(ES)

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

szt

Uniform Cost

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q

11 |os

2 |2AS)EBY

3 |(ACAGEDAS)BEBS)
4 [6DAS)(ES)

5 |EDBS(I0GBSEDAS)

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

tp - Spring 02+ 15

¢

Slide2.4.18

The path to B is extended to D and G and the path to D from B is tied with the path to D from A.

We are using order in Q to settle ties and so we pick the path from B to expand. Note that at this
point G has been visited but not expanded.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.19

Uniform Cost
Expanding D adds paths to C and G. Now the earlier path to D from A is the best pending path and 5 5% s et AT e i 5
we choose it to expand. ick best (by path length) element of Q; palh extensions ampwhere in

Q

09

2AS)5BS

“4CASI(EDAS)BEBS)
EDAS)EES)
GDBS)(10GBS)EDAS)
#GDBS)(9CDBS)(10GBS)EDAS)

I I s

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

oot g

Slide 2.4.20
Uniform Cost

This adds anew path to G and a new path to C. The new path to G is the best on the Q (at least tied

Pick best (by path length) element of Q; Add path extensions anpwhere in Q for best) so we pull it off Q

Q

03}

2ASIEBS)
“CASIEDASIBBS)
EDAS)EES)

GDBSI(10GBS)EDAS)
#GDBS)(9CDBS)(10GBS)EDAS

@GDAS)(9CDAS)(BGDBS)(OCDBS)
(10GBS)

-~ G‘J(ﬁ.p(_.)m|a.

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Bz

Slide2.4.21

Uniform Cost
And we have found our shortest path (SA D G) whose length is 8.

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q

09

2ASEBSY)
ACAGEDAS)BEBS)
GDAS)EES)

EDBS)(10GBSEDAS)
#GDBS)(9CDBS)(10GBS)EDAS)

GDAS)(9CDAS) (BGDBS)(CDBES)
0GB S)

~ mmpmm|a

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

wespmiza o

Slide2.4.22
Why not stop on first visiting a goal?
Note that once again we are not stopping on first visiting (placing on Q) the goal. We stop when the
goal gets expanded (pulled off Q).

When doing Uniform Cost, it is not correct to stop the search when the first
path to a goal is generated, that is, when a nede whose state is a goal is
added to Q.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.23
Why not stop on first visiting a goal?
In uniform-cost search, it isimperative that we only stop when G is expanded and not just when it is
visited. Until apath isfirst expanded, we do not know for afact that we have found the shortest path

to the state. + When doing Uniform Cost, it is not correct to stop the search when the first

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goal since
there are no other sherter paths that remain unexpanded.

oo gf

Slide2.4.24
Why not stop on first visiting a goal?
In the any-path searches we chose to do the same thing, but that choice was motivated at the time
simply by consistency with what we HAVE to do now. In the earlier searches, we could have

- When doing Uniform Cost, it is not correct to stop the search when the first chosen to stop when visiting agoal state and everything would still work fine (actually better).

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goal since
there are no other shorter paths that remain unexpanded.

+ This contrasts with the non-optimal searches where the choice of where to
test for a goal was a matter of i and efficiency, not correct

Bz o

Slide2.4.25
Why not stop on first visiting a goal?
Note that the first path that visited G was not the eventually chosen optimal path to G. This explains

our unwillingness to stop on first visiting G in the example we just did.
+ When doing Uniform Cost, it is not correct to stop the search when the first

path to a goal is generated, that is, when a nede whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goal since
there are no other shorter paths that remain unexpanded.

+ This contrasts with the Any Path searches where the choice of where to
test for a goal was a matter of i and efficiency, not correct

+ Inthe previous example, a path to G was generated at step 5, but it was a
different, shorter, path at step 7 that we accepted.

sz

Slide 2.4.26
Uniform Cost
It is very important to drive home the fact that what uniform-cost search is doing (if we focus on the
sequence of expanded paths) is enumerating the paths in the search tree in order of their path cost.
The green numbers next to the tree on the left are the total path cost of the path to that state. Since,
in atree, there is a unique path from the root to any node, we can simply label each node by the
length of that path.

Another (sasier?) way o see it

5 (oD éa
2@ @

Total path cost

UC enumerates paths in order of total path cost!

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.27

So, for example, the trivial path from Sto Sis the shortest path.

Uniform Cost

Another (easier?) way o see it

62/®\5
s (oD éa
s @ @s s @& @s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

- Spring 02+ 26

¢

Slide2.4.29

Then the path from Sto A to C, with length 4, is the next shortest path.

Uniform Cost

Another (sasier?) way o see it

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

tp - Spring 02+ 88

¢

Uniform Cost

Another (easier?) way o see it

1

®:/.\5

5 (oD é4 5§ (oD &
=@ @ s & (©@s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

§

- springoz - 27

¢

Slide2.4.28

Then the path from Sto A, with length 2, isthe next shortest path.

Uniform Cost

Another (sasier?) way lo see it

CaJz @)s
34 5 (oD (&do
s @ @s s @ ©@s

Total path cost
Order pulled off of Q {expanded)

UC enumerates paths in order of total path cost!

- Spring 02 + 24

Slide 2.4.30

Then comes the path from Sto B, with length 5.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.4.31
Uniform Cost

Followed by the path from Sto A to D, with length 6.)
Another (easier?) way o see it

55 54 5 (oD (&)
s @e s & (©@s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

oo g

Slide 2.4.32
Uniform Cost
And the path from Sto B to D, also with length 6.

Another (easier?) way o see it

1
O
a2

s &4 ¢ R
O @0 2 & ©@»

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

e Spring 02« 52 4
Slide2.4.33
Uniform Cost
And, finally the path from Sto A to D to G with length 8. The other path (SB D G) aso has length
8. Another (sasier?) way lo see it
1
0
o]
4 g o Do
. 0 2@ @

Total path cost
Order pulled off of Q {expanded)

UC enumerates paths in order of total path cost!

sz

Slide2.4.34
Uniform Cost

This gives us the path we found. Note that the sequence of expansion corresponds precisely to path-

Anolherloasiers):weyloges ! length order, so it is not surprising we find the shortest path.

1
PR
(aJz @Js
5 @4 s e o
D B 1 @ D

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

iz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 2.5

Slide25.1 Classes of Search

Now, we will turn our attention to what is probably the most popular search algorithm in Al, the Class Name Operation

A* agorithm. A* isan informed, optimal search algorithm. We will spend quite a bit of time Any Path Depth-First Systemalic exploration of whole tree

going over A*; we will start by contrasting it with uniform-cost search. Uninformed Breadth-First until a goal node is found.
Any Path Best-First lJzes heuristic measure of goodness
Informed of a node, e.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure
Uninformed Finds "shortest’ path
Optimal A* Uses path “length” measure and heuristic
Informed Finds “shortest’ path

p - pting 021 4
Slide2.5.2
Goal Direction

Uniform-cost search as described so far is concerned only with expanding short paths; it pays no
particular attention to the goal (since it has no way of knowing whereitis). UC isreally an
algorithm for finding the shortest paths to all states in a graph rather than being focused in reaching
aparticular goal.

UC is really trying to identify the shortest path to every state in the graph in
order. It has no particular hias to finding a pathto a goal early in the search.

p - Spiing 02+ & (ﬁ

Slide2.5.3
Goal Direction

We can bias UC to find the shortest path to the goal that we are interested in by using a heuristic

estimate of remaining distance to the goal. This, qf course, gannot be tlhe exact path di st_ance (if we + UG s really trying to identify the shortest path to svary stats in the graph in
knewlthat Wewould'not need much of asearch); instead, it is a stand-in for the actual distance that order. It has no particular hias to finding a path to a goal early in the search.
can give us some guidance. - We can introduce such a bias by means of heuristic function h{N), which is

an estimate (h) of the distance from a state to the goal.

e of

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.5.4

Goal Direction

What we can do is to enumerate the paths by order of the SUM of the actual path length and the

+ UC s really trying to identify the shortest path to every state in the graph in esti mate'of the remaining dlstlance. Think of this as our best estimate of the TQTAL distance to the
order. It has no particular bias to finding a path to a goal early in the search. goal. This makes more sense if we want to generate a path to the goal preferentially to short paths

- We canintroduce such a bias by means of heuristic function h{N), which is away from the goal.

an estimate (h) of the distance from a state to the goal.

- Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length = g+ h.

wemis of

Slide25.5
Goal Direction
We call an estimate that always under estimates the remaining distance from any node an

admissible (heuristic) estimate. + UC is really trying to identify the shortest path to every state in the graph in

order. It has no particular hias to finding a path te a goal early in the search.

+ We canintroduce such a bias by means of heuristic function h{N), which is
an estimate (h) of the distance from a state to the goal.

- Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length = g+ h.

- An estimate that always underestimates the real path length to the goal is
called admissible. For example, an estimate of 0 is admissible {but useless).
Straight line dist: is admissible estimate for path length in Euclidean
space.

s

Slide2.5.6
Goal Direction
In order to preserve the guarantee that we will find the shortest path by expanding the partial paths
» UC s really trying to identify the shortest path to every state in the graph in based on the esimal_ed_ tOta]_ path _Iength _tO _the goal (likein U_C Wit_hOUt an eXpa_nded list), we must
order. It has no particular bias to finding a path to a goal early in the search. ensure that our heuristic estimate is admissible. Note that straight-line distanceis always an
underestimate of path-length in Euclidean space. Of course, by our constraint on distances, the

+ We canintroduce such a hias by means of heuristic function h{N), which is constant function 0 is dways admissible (but useless).

an estimate (h) of the distance from a state to the goal.

+ Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length = g+ h.

+ An estimate that always underestimates the real path length to the goal is
called admissible. For example, an estimate of 0 is admissible {but useless).
Straight line distance is admissible estimate for path length in Euclidean

space.
+ Use of an admissihle estimate guarantees that UC will still find the shortest
path.
- Sping 02+ 6 4
Slide2.5.7

Goal Direction
UC using an admissible heuristic isknown as A* (A star). It isavery popular search method in Al.

= UC s really trying to identify the shortest path to every state in the graph in
order. It has no particular bias to finding a path to a goal early in the search.

+ We can introduce such a hias by means of heuristic function h{N), which is
an estimate (h) of the distance from a state n to a goal.

+ Instead of enumerating paths in order of just length (g}, enumerate paths in
terms of f = estimated total path length = g+ h.

+ An estimate that always underestimates the real path length to the goal is
called admissible. For example, an estimate of 0 is admissible {(but useless).
Straight line dist: is admissible estimate for path length in Euclidean
space.

+ Use of an admissible estimate guarantees that UC will still find the shortest
path.

= UC with an admissible estimate is known as A" {pronounced “A star”)

search.
tp - Sping 02+ 7 (E

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Straight-Line Estimate

- ping 02+ 5

Slide2.5.9

Then, we can use the straight-line (airline) distances (shown in red) as an underestimate of the actual
driving distance between any city and the goal. The best possible driving distance between two
cities cannot be better than the straight-line distance. But, it can be much worse.

S0

Straight-Line Estimate

- Spring 02+ 1

Slide25.11

It may help to understand why an underestimate of remaining distance may help reach the goal
faster to visualize the behavior of UC in asimple example.

Imagine that the states in a graph represent pointsin a plane and the connectivity isto nearest be looked at hefore any
neighbors. In this case, UC will expand nodes in order of distance from the start point. That is, as
time goes by, the expanded points will be located within expanding circular contours centered on the (/

points that are heading towards the goal.

start point. Note, however, that points heading away from the goal will be treated just the same as m *
P P g away g J s _/ \ \
A B
goal

Slide2.5.8

Let'slook at aquick example of the straight-line distance underestimate for path length in a graph.
Consider the following simple graph, which we are assuming is embedded in Euclidean space, that
is, think of the states as city locations and the length of the links are proportional to the driving
distance between the cities along the best roads.

Straight-Line Estimate

s

Slide 2.5.10

Here we see that the straight-line estimate between B and G is very bad. The actual driving distance
is much longer than the straight-line underestimate. Imagine that B and G are on different sides of
the Grand Canyon, for example.

Why use estimate of goal distance?

Order in which UC looks at
states. A and B are same
distance from start, so will

longer paths. No “bias”
towards goal.

Assume states are points
in the Euclidean plane.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 2.5.12
Why use estimate of goal distance?
If we add in an estimate of the straight-line distance to the goal, the points expanded will be

/— Stra'::;_i"A‘";h;;hBUg:"s:f:t bounded contours that keep constant the sum of the distance from the start and the distance to the
distance from start, so wil goal, as suggested in the figure. What the underestimate has done isto "bias’ the search towards the
be looked at before any goal.

longer paths. No “hias”
towards goal.

'
A
B goal
sta Order of examination using
dist. from start + estimate of
dist. to goal. Note “hias”
Assume states are points toward the goal; points away
in the Euclidean plane. from goal look worse.

oot gf

Slide2.5.13
A*
Let'swalk through an example of A*, that is, uniform-cost search using a heuristic whichisan I N R eyl
underestimate of remaining cost to the goal. In this example we are focusing on the use of the ldhes! fovpallenathifiouriic elomenitof G Add patiedansions anytisren
underestimate. The heuristic we will be using is similar to the earlier one but slightly modified to be
admissible.

=l

We start at Sas usual.

Heuristic Values
A=2 c= $=0
B=3 D= G=0

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Bt o

Slide2.5.14
A*
And expand to A and B. Note that we are using the path length + underestimate and so the S-A path
Pick best {by path length+heuristic) element of Q; Add path extensions anywhere in Q

has avalue of 4 (length 2, estimate 2). The S-B path has avalue of 8 (5 + 3). We pick the path to A.

Q
11 oS
2 |4AS18B9Y

Heuristic Values
A=2 c= $=0
B=3 D= G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

sz

Slide2.5.15
A*
Expand to C and D and pick the path with shorter estimate, to C.
Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

08)

“4ASBBSY)
(5CAS)(TDAS)BBS)

(X m‘a

Heuristic Values
A=2 o] $=0
B=3 D= G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.5.16
A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

05

4ASIBBS
5CASI(TDAS|BBS)
{7DASIBES)

|| R -

Heuristic Values
A=2 c= $=0
B=3 D= G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

oot gf

Slide2.5.17

Then a path to the goal has the best value. However, there is another path that istied, the S-B path.
It is possible that this path could be extended to the goa with atotal length of 8 and we may prefer
that path (since it has fewer states). We have assumed here that we will ignore that possibility, in
some other circumstances that may not be appropriate.

Slide2.5.18
A*

Pick best {by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

11 oS

2 [4ASIEBSY

3 |5CAS(TDAS|BBS)
4

5

DAS)(BBS)
[BcDAsj0cDASBRS)

Heuristic Values
A=2 c= $=0
B=3 D= G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

sz

Slide2.5.19

It isimportant to realize that not all heuristics are admissible. In fact, the rather arbitrary heuristic
values we used in our best-first example are not admissible given the path lengths we later assigned.
In particular, the value for D is bigger than its distance to the goal and so this set of distancesis not
everywhere an underestimate of distance to the goal from every node. Note that the (arbitrary) value
assigned for Sis also an overestimate but this value would have no ill effect since at thetime Sis
expanded there are no alternatives.

C has no descendants, so we pick the shorter path (to D).

A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

08
“ASIEBS

GCASI(TDAS)BBS)

{7DAS 8BS

a-r-c.:m|a

BGDAS)I0CDAS)BB S)

Heuristic Values
A=2 c= $=0
B=3 D= G=0

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

So, we stop with a path to the goal of length 8.

= Sprng 02+ 17 4
Not all heuristics are admissible
Given the link lengths in the figure, is the table e
of heuristic values that we used in our earlier 5 ®
best-first example an admissible heuristic? 2
<D,
Nol 1 §
Ais ok E
Bis ok
Cis ok Heuristic Values
Dis too big, needs to he <=2 A=2 o] $=10
S is too big, can always use 0 for start B=3 D=4 G=0

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 2.5.20
Admissible Heuristics
Although it is easy and intuitive to illustrate the concept of a heuristic by using the notion of straight-

8 Busle: Mowelesbereachigoal Thinkefamoveazmoring SamptyStle, line distance to the goal in Euclidean space, it is important to remember that thisis by no means the

5 |2 |8 1]2 I3 only example.
3 |5 E:) 8 4 . . ; .) .
TRERC T |5 Take solving the so-called 8-puzzle, in which the goal isto arrange the pieces asin the goal state on
3 5 theright. We can think of amove in this game as sliding the "empty" space to one of its nearest

vertical or horizontal neighbors. We can help steer a search to find a short sequence of moves by

using a heuristic estimate of the moves remaining to the goal.

Alternative underestimates of “distance” {number of moves) to goal:
1. Number of misplaced tiles (7 in example above) One admissible estimate is simply the number of misplaced tiles. No move can get more than one

misplaced tile into place, so this measure is a guaranteed underestimate and hence admissible.

oo gf

Slide2.5.21
Admissible Heuristics
We can do better if we note that, in fact, each move can at best decrease by one the

"Manhattan" (aka Taxicab, aka rectilinear) distance of atile from its goal. 8 Puzzle: Move tiles to reach goal. Think of a move as moving “empty” tile.

6 |2 |8 1]2 |3
So, the sum of these distances for each misplaced tile is also an underestimate. Note that it is always T 15 :> g 7
abetter (larger) underestimate than the number of misplaced tiles. In this example, thereare 7 REE 15 |5
misplaced tiles (all except tile 2), but the Manhattan distance estimateis 17 (4 for tile 1, O for tile 2, 3 3

2fortile3, 3fortile4, 1fortile5, 3fortile6, 1 for tile 7 and 3 for tile 8).

Alternative underestimates of “distance” (number of moves) to goal:
1. MNumber of misplaced tiles (7 in example above)

2. Sum of Manhattan distance of tile to its goal location (17 in example
above). Manhattan distance hetween (x;,y;) and (x,,¥,) is |x¢-1H vyl
Each move can only decrease the distance of exactly one tile.

The second of these is much better at predicting actual number of moves.

Bz g

