
6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

6.034 Notes: Section 2.4 

Slide 2.4.1 

So far, we have looked at three any-path algorithms, depth-first and breadth-first, which are 
uninformed, and best-first, which is heuristically guided. 

Slide 2.4.2 

Now, we will look at the first algorithm that searches for optimal paths, as defined by a "path 
length" measure. This uniform cost algorithm is uninformed about the goal, that is, it does not use 
any heuristic guidance. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.3 

This is the simple algorithm we have been using to illustrate the various searches. As before, we will 
see that the key issues are picking paths from Q and adding extended paths back in. 

Slide 2.4.4 

We will continue to use the algorithm but (as we will see) the use of the Visited list conflicts with 
optimal searching, so we will leave it out for now and replace it with something else later. 

Slide 2.4.5 

Why can't we use a Visited list in connection with optimal searching? In the earlier searches, the use 
of the Visited list guaranteed that we would not do extra work by re-visiting or re-expanding states. 
It did not cause any failures then (except possibly of intuition). 

Slide 2.4.6 

But, using the Visited list can cause an optimal search to overlook the best path. A simple example 
will illustrate this. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.7 

Clearly, the shortest path (as determined by sum of link costs) to G is (S A D G) and an optimal 
search had better find it. 

Slide 2.4.8 

However, on expanding S, A and D are Visited, which means that the extension from A to D would 
never be generated and we would miss the best path. So, we can't use a Visited list; nevertheless, we 
still have the problem of multiple paths to a state leading to wasted work. We will deal with that 
issue later, since it can get a bit complicated. So, first, we will focus on the basic operation of 
optimal searches. 

Slide 2.4.9 

The first, and most basic, algorithm for optimal searching is called uniform-cost search. Uniform-
cost is almost identical in implementation to best-first search. That is, we always pick the best node 
on Q to expand. The only, but crucial, difference is that instead of assigning the node value based on 
the heuristic value of the node's state, we will assign the node value as the "path length" or "path 
cost", a measure obtained by adding the "length" or "cost" of the links making up the path. 

Slide 2.4.10 

To reiterate, uniform-cost search uses the total length (or cost) of a path to decide which one to 
expand. Since we generally want the least-cost path, we will pick the node with the smallest path 
cost/length. By the way, we will often use the word "length" when talking about these types of 
searches, which makes intuitive sense when we talk about the pictures of graphs. However, we mean 
any cost measure (like length) that is positive and greater than 0 for the link between any two states. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.11 

The path length is the SUM of the length associated with the links in the path. For example, the path 
from S to A to C has total length 4, since it includes two links, each with edge 2. 

Slide 2.4.12 

The path from S to B to D to G has length 8 since it includes links of length 5 (S-B), 1 (B-D) and 2 
(D-G). 

Slide 2.4.13 

Similarly for S-A-D-C. 

Slide 2.4.14 

Given this, let's simulate the behavior of uniform-cost search on this simple directed graph. As usual 
we start with a single node containing just the start state S. This path has zero length. Of course, we 
choose this path for expansion. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.15 

This generates two new entries on Q; the path to A has length 2 and the one to B has length 5. So, 
we pick the path to A to expand. 

Slide 2.4.16 

This generates two new entries on the queue. The new path to C is the shortest path on Q, so we 
pick it to expand. 

Slide 2.4.17 

Since C has no descendants, we add no new paths to Q and we pick the best of the remaining paths, 
which is now the path to B. 

Slide 2.4.18 

The path to B is extended to D and G and the path to D from B is tied with the path to D from A. 
We are using order in Q to settle ties and so we pick the path from B to expand. Note that at this 
point G has been visited but not expanded. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.19 

Expanding D adds paths to C and G. Now the earlier path to D from A is the best pending path and 
we choose it to expand. 

Slide 2.4.20 

This adds a new path to G and a new path to C. The new path to G is the best on the Q (at least tied 
for best) so we pull it off Q. 

Slide 2.4.21 

And we have found our shortest path (S A D G) whose length is 8. 

Slide 2.4.22 

Note that once again we are not stopping on first visiting (placing on Q) the goal. We stop when the 
goal gets expanded (pulled off Q). 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.23 

In uniform-cost search, it is imperative that we only stop when G is expanded and not just when it is 
visited. Until a path is first expanded, we do not know for a fact that we have found the shortest path 
to the state. 

Slide 2.4.24 

In the any-path searches we chose to do the same thing, but that choice was motivated at the time 
simply by consistency with what we HAVE to do now. In the earlier searches, we could have 
chosen to stop when visiting a goal state and everything would still work fine (actually better). 

Slide 2.4.25 

Note that the first path that visited G was not the eventually chosen optimal path to G. This explains 
our unwillingness to stop on first visiting G in the example we just did. 

Slide 2.4.26 

It is very important to drive home the fact that what uniform-cost search is doing (if we focus on the 
sequence of expanded paths) is enumerating the paths in the search tree in order of their path cost. 
The green numbers next to the tree on the left are the total path cost of the path to that state. Since, 
in a tree, there is a unique path from the root to any node, we can simply label each node by the 
length of that path. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.27 

So, for example, the trivial path from S to S is the shortest path. 

Slide 2.4.28 

Then the path from S to A, with length 2, is the next shortest path. 

Slide 2.4.29 

Then the path from S to A to C, with length 4, is the next shortest path. 

Slide 2.4.30 

Then comes the path from S to B, with length 5. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.31 

Followed by the path from S to A to D, with length 6. 

Slide 2.4.32 

And the path from S to B to D, also with length 6. 

Slide 2.4.33 

And, finally the path from S to A to D to G with length 8. The other path (S B D G) also has length 
8. 

Slide 2.4.34 

This gives us the path we found. Note that the sequence of expansion corresponds precisely to path-
length order, so it is not surprising we find the shortest path. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

6.034 Notes: Section 2.5 

Slide 2.5.1 

Now, we will turn our attention to what is probably the most popular search algorithm in AI, the 
A* algorithm. A* is an informed, optimal search algorithm. We will spend quite a bit of time 
going over A*; we will start by contrasting it with uniform-cost search. 

Slide 2.5.2 

Uniform-cost search as described so far is concerned only with expanding short paths; it pays no 
particular attention to the goal (since it has no way of knowing where it is). UC is really an 
algorithm for finding the shortest paths to all states in a graph rather than being focused in reaching 
a particular goal. 

Slide 2.5.3 

We can bias UC to find the shortest path to the goal that we are interested in by using a heuristic 
estimate of remaining distance to the goal. This, of course, cannot be the exact path distance (if we 
knew that we would not need much of a search); instead, it is a stand-in for the actual distance that 
can give us some guidance. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.5.4 

What we can do is to enumerate the paths by order of the SUM of the actual path length and the 
estimate of the remaining distance. Think of this as our best estimate of the TOTAL distance to the 
goal. This makes more sense if we want to generate a path to the goal preferentially to short paths 
away from the goal. 

Slide 2.5.5 

We call an estimate that always underestimates the remaining distance from any node an 
admissible (heuristic) estimate. 

Slide 2.5.6 

In order to preserve the guarantee that we will find the shortest path by expanding the partial paths 
based on the estimated total path length to the goal (like in UC without an expanded list), we must 
ensure that our heuristic estimate is admissible. Note that straight-line distance is always an 
underestimate of path-length in Euclidean space. Of course, by our constraint on distances, the 
constant function 0 is always admissible (but useless). 

Slide 2.5.7 

UC using an admissible heuristic is known as A* (A star). It is a very popular search method in AI. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.5.8 

Let's look at a quick example of the straight-line distance underestimate for path length in a graph. 
Consider the following simple graph, which we are assuming is embedded in Euclidean space, that 
is, think of the states as city locations and the length of the links are proportional to the driving 
distance between the cities along the best roads. 

Slide 2.5.9 

Then, we can use the straight-line (airline) distances (shown in red) as an underestimate of the actual 
driving distance between any city and the goal. The best possible driving distance between two 
cities cannot be better than the straight-line distance. But, it can be much worse. 

Slide 2.5.10 

Here we see that the straight-line estimate between B and G is very bad. The actual driving distance 
is much longer than the straight-line underestimate. Imagine that B and G are on different sides of 
the Grand Canyon, for example. 

Slide 2.5.11 

It may help to understand why an underestimate of remaining distance may help reach the goal 
faster to visualize the behavior of UC in a simple example. 

Imagine that the states in a graph represent points in a plane and the connectivity is to nearest 
neighbors. In this case, UC will expand nodes in order of distance from the start point. That is, as 
time goes by, the expanded points will be located within expanding circular contours centered on the 
start point. Note, however, that points heading away from the goal will be treated just the same as 
points that are heading towards the goal. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.5.12 

If we add in an estimate of the straight-line distance to the goal, the points expanded will be 
bounded contours that keep constant the sum of the distance from the start and the distance to the 
goal, as suggested in the figure. What the underestimate has done is to "bias" the search towards the 
goal. 

Slide 2.5.13 

Let's walk through an example of A*, that is, uniform-cost search using a heuristic which is an 
underestimate of remaining cost to the goal. In this example we are focusing on the use of the 
underestimate. The heuristic we will be using is similar to the earlier one but slightly modified to be 
admissible. 

We start at S as usual. 

Slide 2.5.14 

And expand to A and B. Note that we are using the path length + underestimate and so the S-A path 
has a value of 4 (length 2, estimate 2). The S-B path has a value of 8 (5 + 3). We pick the path to A. 

Slide 2.5.15 

Expand to C and D and pick the path with shorter estimate, to C. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.5.16 

C has no descendants, so we pick the shorter path (to D). 

Slide 2.5.17 

Then a path to the goal has the best value. However, there is another path that is tied, the S-B path. 
It is possible that this path could be extended to the goal with a total length of 8 and we may prefer 
that path (since it has fewer states). We have assumed here that we will ignore that possibility, in 
some other circumstances that may not be appropriate. 

Slide 2.5.18 

So, we stop with a path to the goal of length 8. 

Slide 2.5.19 

It is important to realize that not all heuristics are admissible. In fact, the rather arbitrary heuristic 
values we used in our best-first example are not admissible given the path lengths we later assigned. 
In particular, the value for D is bigger than its distance to the goal and so this set of distances is not 
everywhere an underestimate of distance to the goal from every node. Note that the (arbitrary) value 
assigned for S is also an overestimate but this value would have no ill effect since at the time S is 
expanded there are no alternatives. 



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.5.20 

Although it is easy and intuitive to illustrate the concept of a heuristic by using the notion of straight-
line distance to the goal in Euclidean space, it is important to remember that this is by no means the 
only example. 

Take solving the so-called 8-puzzle, in which the goal is to arrange the pieces as in the goal state on 
the right. We can think of a move in this game as sliding the "empty" space to one of its nearest 
vertical or horizontal neighbors. We can help steer a search to find a short sequence of moves by 
using a heuristic estimate of the moves remaining to the goal. 

One admissible estimate is simply the number of misplaced tiles. No move can get more than one 
misplaced tile into place, so this measure is a guaranteed underestimate and hence admissible. 

Slide 2.5.21 

We can do better if we note that, in fact, each move can at best decrease by one the 
"Manhattan" (aka Taxicab, aka rectilinear) distance of a tile from its goal. 

So, the sum of these distances for each misplaced tile is also an underestimate. Note that it is always 
a better (larger) underestimate than the number of misplaced tiles. In this example, there are 7 
misplaced tiles (all except tile 2), but the Manhattan distance estimate is 17 (4 for tile 1, 0 for tile 2, 
2 for tile 3, 3 for tile 4, 1 for tile 5, 3 for tile 6, 1 for tile 7 and 3 for tile 8). 


