6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 11.1

Slide11.1.1

We've now spent afair bit of time learning about the language of first-order logic and the
mechanisms of automatic inference. And, we've also found that () it is quite difficult to write first-
order logic and (b) quite expensive to do inference. Both of these conclusions are well justified.

Therefore, you may be wondering why we spent the time on logic.

We can motivate our study of logic in avariety of ways. For one, it is the intellectual foundation
for all other ways of representing knowledge about the world. As we have already seen, the Web
Consortium has adopted alogical language for its Semantic Web project. We also saw that airlines
use alanguage not unlike FOL to describe fare restrictions. We will see later when we talk about

natural language understanding that logic also plays akey role.

Thereis another practical application of logic that is reasonably widespread namely logic
programming. In this section, we will look briefly at logic programming. Later, when we study

natural language understanding, we will build on these ideas.

Logic in Practice

+ Language of logic is extremely powerful.

* Say what's true, not how to use it.
= ¥ x, y (3 z Parent(x,z) A Parent(z,y)) ++ GrandParent(x,y)
= Given parents, find grandparents
« Given grandparents, find parents

6.034 - Spring 03+ 2

Slide11.1.3

However, this very power and lack of specificity about algorithms means that the general methods
for performing computations on logical representations (for example, resolution refutation) are

hopelessly inefficient for most practical problems.

Rules and Logic Programming

6.034 - Spring 03« 1 4

Slide11.1.2

We have seen that the language of logic is extremely general, with much of the power of natural
language. One of the key characteristics of logic, as opposed to programming languages but like
natural languages, isthat in logic you write down what's true about the world, without saying how to
useit. So, for example, one can characterize the relationship between parents and grandparentsin
this sentence without giving an algorithm for finding the grandparents from the grandchildren or a
different algorithm for finding the grandchildren given the grandparents.

Logic in Practice

+ Language of logic is extremely powerful.

* Say what's true, not how to use it.
= ¥ x, y (3 z Parent(x,z) A Parent(z,y)) ++ GrandParent(x,y)
= Given parents, find grandparents
» Given grandparents, find parents

* But, resolution theorem-provers are too inefficient!

6.034 - Spring 034 3

¢

Logic in Practice

* Language of logic is extremely powerful.
* Say what's true, not how to use it.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.4

There are, however, approaches to regaining some of the efficiency while keeping much of the
power of the representation. These approaches involve both limiting the language as well as
simplifying the inference algorithms to make them more predictable. Similar ideas underlie both
logic programming and rule-based systems. We will bias our presentation towards logic

« ¥ x, y (3 z Parent(x,z) A Parent(z,y)) ++ GrandParent(x,y)
= Given parents, find grandparents
« Given grandparents, find parents
* But, resolution theorem-provers are too inefficient!
* To regain practicality:
= Limit the language
« Simplify the proof algorithm
* Rule-Based Systems
» Logic Programming

programming.

6.034 - Spring 03 = 4 4

Slide11.1.5

In logic programming we will also use the clausal representation that we derived for resolution
refutation. However, we will limit the type of clauses that we will consider to the class called Horn
clauses. A clauseis Horn if it has at most one positive literal. In the examples below, we show
literals without variables, but the discussion applies both to propositional and first order logic.

There are three cases of Horn clauses:

. Aruleisaclause with one or more negative literals and exactly one positive literal.
Y ou can see that thisis the clause form of an implication of theformP, ~ ... »
P, -> Q,thatis, the conjuction of the Psimplies Q.

. A fact isaclause with exactly one positive literal and no negative literals. We
generally will distinguish the case of aground fact, that is, aliteral with no
variables, from the general case of aliteral with variables, which ismore like an
unconditional rule than what one would think of asa"fact".

. Ingeneral, thereis another case, known as a consistency constraint when the clause
has no positive literals. We will not deal with these further, except for the specia
case of aconjunctive goal clause which will take this form (the negation of a
conjuction of literalsis aHorn clause with no positive literal). However, goal clauses
arenot rules.

Horn Clauses Slide11.1.6

Horn Clauses

* A clause is Horn if it has at most one positive
literal
+ =P, V..Vv=P,vQ(Rule)

+ Q (Fact)

*+ 2Py V..VaP, (Consistency Constraint)
* We will not deal with Consistency Constraints

6.034 - Spring 03 # §

¢

There are many notations that are in common use for Horn clauses. We could write them in

* A clause is Horn if it has at most one positive

literal
+ =P, V..Vv=P,vQ(Rule)
+ Q (Fact)

*+ 2Py V..VaP, (Consistency Constraint)
* We will not deal with Consistency Constraints
* Rule Notation

sPLA AP, Q (Logic)
= IfP,...P, ThenQ (Rule-Based System)
2o Q =Py Py (Prolog)

* P, are called antecedents (or body)
*Q is called the consequent (or head)

6.034 - Spring 03+ 6

4

standard logical notation, either as clauses, or asimplications. In rule-based systems, one usually
has some form of equivalent "If-Then" syntax for the rules. In Prolog, which is the most popular
logic programming language, the clauses are written as a sort of reverse implication with the ":-"
instead of "<-".

Wewill call the Q (positive) literal the consequent of arule and call the P, (negative) literals the

antecedents. Thisis terminology for implications borrowed from logic. In Prolog it is more
common to call Q the head of the clause and to call the P literals the body of the clause.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.7

Note that not every logical statement can be written in Horn clause form, especialy if we disallow
clauses with zero positive literal's (consistency constraints). Importantly, one cannot have a negation
on the right hand side of an implication. That is, we cannot have rules that conclude that something
isnot true! Thisis areasonably profound limitation in general but we can work around it in many
useful situations, which we will discuss later. Note that because we are not dealing with consistency
constraints (al negative literals) we will not be able to deal with negative facts either.

Slide 11.1.8
Limitations

« Cannot conclude negation
*P=+-Q
« = PVv-Q : Consistency constraint
*« — P : Consistency constraint

* Cannot conclude (or assert) disjunction
*PLAP, 2 QVQ,
Qv Q

* These are not Horn

6.034 - Spring 034 8 q

Slide11.1.9

It turns out that given our simplified language, we can use a simplified procedure for inference,
called backchaining, which is basically a generalized form of Modus Ponens (one of the "natural
deduction” rules we saw earlier).

Backchaining is relatively simple to understand given that you've seen how resolution works. We
start with aliteral to "prove", which we call C. We will also use Green'strick (asin Chapter 6.3) to
keep track of any variable bindingsin C during the proof.

We will keep astack (first in, last out) of goals to be proved. We initialize the stack to have C (first)
followed by the Answer literal (which we write as Ans).

- o Slide11.1.10
Inference: Backchaining

*To “prove” a literal C
= Push C and an Ans literal on a stack

» Repeat until stack only has Ans literal or no
actions available.

- Pop literal L off of stack

6,834 - Sgving 63 » 10 Q

Limitations

e Cannot conclude negation
*P=+-Q
« = PVv-Q : Consistency constraint
*« — P : Consistency constraint

6.034 - Spring 03 # 7

4

Similarly, if we have adisjuction on the right hand side of an implication, the resulting clause is not
Horn. In fact, we cannot assert a disjunction with more than one positive literal or adisjuction of all
negative literals. The former is not Horn while the latter is a consistency constraint.

Inference: Backchaining

*To “prove” a literal C
= Push C and an Ans literal on a stack

6.034 - Spring 03 # 9

¢

The basic loop isto pop alitera (L) off the stack until either (a) only the Ansliteral remains or (b)
there are no further actions possible. The first case corresponds to a successful proof; the second
case represents a failed proof.

A word of warning. This loop does not necessarily terminate. We will see examples later where
simple sets of ruleslead to infinite loops.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.11

Given aliteral L, we look for afact that unifies with L or a rule whose consequent (head) unifies
with L. If we find a match, we push the antecedent literals (if any) onto the stack, apply the unifier
to the entire stack and then rename all the variables to make sure that there are no variable conflicts
in the future. There are other ways of dealing with the renaming but this one will work.

In general, there will be more than one fact or rule that could match L; we will pick one now but be
prepared to come back to try another one if the proof doesn't work out. More on this later.

o Slide11.1.12
Inference: Backchaining

» - matches.
*To “prove” a literal C

» Push C and an Ans literal on a stack
» Repeat until stack only has Ans literal or no
actions available.
- Pop literal L off of stack
-Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack
- Apply unifier to entire stack
- Rename variables on stack
-If no match, fail [backup to last choice]

6,634 - Spring 63 » 12 4

Slide 11.1.13

If you think about it, you'll notice that backchaining isjust our familiar friend, resolution. The stack
of goals can be seen as negative literals, starting with the negated goal. We don't actually show
literals on the stack with explicit negation but they are implicitly negated.

At every point, we pair up anegative literal from the stack with a positive literal (the consequent)
from afact or rule and add the remaining negative literals (the antecedents) to the stack.

Slide11.1.14

Inference: Backchaining

«To "prove” a literal C
» Push C and an Ans literal on a stack
» Repeat until stack only has Ans literal or no
actions available.
- Pop literal L off of stack
-Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack
- Apply unifier to entire stack
- Rename variables on stack

6,034 - Spving 03 » 11 4

If no match can be found for L, we fail and backup to try the last choice that has other pending

Backchaining and Resolution

« Backchaining is just resolution

* To prove C (propositional case)
* NegateC=-C
*Findrule-P,v..v-P,vC
* Resolvetoget - P, v ..V~ P,
» Repeat for each negative literal

 First order case introduces unification but otherwise
the same.

6,634 - Sgring 63 » 13 Q

Proof Strategy

» Depth-First search for a proof
* Order matters
* Rule order
-try ground facts first
-then rules in given order
» Antecedent order
~left to right
* More predictable, like a program, less like logic

6,034 - Saving 03 » 14

¢

When we specified backchaining we did it with a particular search algorithm (using the stack),
which is basically depth-first search. Furthermore, we will assume that the facts and rules are
examined in the order in which they occur in the program. Also that literals from the body of arule
are pushed onto the stack in reverse order, os that the one that occurs first in the body will be the
first popped off the stack.

Given these ordering restrictions, it is much easier to understand what alogic program will do. On
the other hand, one must understand that what it will do is not what a general theorem prover would
do with the same rules and facts.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.15
Time for an example. Let'slook at the following database of facts and rules. The first two entries are Example
ground facts, that A is Father of B and B is Mother of C. The third entry defines a grandparent rule 1. Father(A,B) i ground fact
FPp . 2. Mother(B,C) ¢ ground fact
that we would writein FOL as: 3. GrandP(?x,7z):- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mothex(?x,?y)
@x . @y. @z. P(x,y) ™ P(y,z) -> GrandP(x,z)
Our ruleis simply this rule written with the implication pointing "backwards". Also, our rule
language does not have quantifiers; all the variables are implicitly universally quantified.
In our rule language, we will modify our notational conventions for FOL. Instead of identifying
constants by prefixing them with $, we will indicate variables by prefixing them with 2. The
rationale for thisisthat in our logic examples we had |ots more variables than constants, but that
will be different in many of our logic-programming examples.
The next two rules specify that a Father is a Parent and a Mother is a parent. In usual FOL notation, so-spgdeis of
these would be:
@x . @y. F(X,y) —> P(X,y)
@x . @y. M(X,y) -> P(x,y)
Slide11.1.16
Example
1. Father(A,B) < ipromil Ba Now, we set out to find the Grandparent of C. With resolution refutation, we would set out to
2. Mother(B,C) ; ground fact derive a contradiction from the negation of the goal:
3. GrandP(?x,?z):- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x, ?y) ~]g . Grandp(g , C)
Prove:
GrandP (?g,C), Ans(?g)
whose clause formis~GrandP (g, C). Thelist of literalsin our goal stack are implicitly
negated, so we start with GrandP (g, C) on the stack. We have also added the Ans literal with
the variable we are interested in, ?g, hopefully the name of the grandparent.
Now, we set out to find afact or rule consequent literal in the database that matches our goal
literal.
6,834 - Spring 83 » 16 ‘q
Slide11.1.17
Y ou can see that the grandparent goal literal unifies with the consequent of rule 3 using the unifer Example
{ ?x/?g, ?z/C }. So, we push the antecedents of rule 3 onto the stack, apply the unifier and . Fathex(a,B) i ground fact
then rename all the remaining variables, asindicated. The resulting goal stack now has two Parent » Mothaz(B,C) i grounn, faot

. GrandP(?x,?z) :- Parent(?x,?y),Parent(?y,?z)
. Parent(?x,?y) :- Father(?x,?y)
. Parent(?x,?y) :- Mothex(?x,7?y)

literals and the Ans literal. We proceed as before by popping the stack and trying to unify with the
first Parent literal.

N

Prove:
GrandP(?g,C), Ans(?g)

[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]
Parent(?g,,?y,) , Parent(?y,,C), Ans(?q,)

6,634 - Sgring 63 » 17 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.18
Example The first Parent goal literal unifies with the consequent of rule 4 with the unifier shown. The
Father (A,B) i ground fact antecedent (the Father literal) is pushed on the stack, the unifier is applied and the variables are
Mother (B,C) ¢ ground fact renamed.

GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,7y)

Parent (?x,?y) :~ Mother (?x,?y) Note that there are two Parent rules, we use the first one but we have the other one available should
we fail with thisone.

L

* Prove:
GrandP(?g,C), Ans(?g)
[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]
+ Parent(?g,,?y,), Parent(?y,,C), Ans(?qg,)
[4,7x/79,.7¥/7Y¥,: ?¥,=7¥,,7G,=7g,]
* Father(?g,,?y,), Parent(?y,,C), Ans(?g,)

6,034 - Spring 63 » 18 4

Slide 11.1.19

The Father god literal matchesthe first fact, which now unifies the ?g variable to A and the %y Example

variable to B. Note that since we matched afact, there are no antecedents to push on the stack (asin Father (A,B) i ground fact
Mother (B,C) ¢ ground fact

resolution with a unit-length clause). We apply the unifier, rename and proceed. GrandP(?x,7z) :- Parent(?x,?y) ,Parent (?y,?z)

Parent(?x,?y) :- Father(?x,?y)
Parent (?x,?y) : - Mothex(?x,7%y)

o

* Prove:
GrandP(?g,C), Ans(?g)

[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]

+ Parent(?g,,?y,), Parent(?y,,C), Ans(?qg,)
[4,7x/79,.7¥/7Y¥,: ?¥,=7¥,,7G,=7g,]

* Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
(1,7g,/A,7y,/B]

+ Parent(B,C), Ans(A)

6,034 - Spring 63 » 19 q

Slide 11.1.20
Example Now, we can match the Parent(B,C) goal literal to the consequent of rule 4 and get anew goal (after
Father (A,B) i ground fact applying the substitution to the antecedent), Father (B, C). However we can see that thiswill not

Mother (B,C) ¢ ground fact

GrandP (?x,?z) :- Parent (?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,7y)

Parent (?x,?y) : - Mothex(?x,7%y)

match anything in the database and we get afailure.

o

* Prove:
GrandP(?g,C), Ans(?g)

[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]

+ Parent(?g,,?y,), Parent(?y,,C), Ans(?qg,)
[4,7x/79,.7¥/7Y¥,: ?¥,=7¥,,7G,=7g,]

* Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
[1,7g,/A,.7y,/B]

+ Parent(B,C), Ans(A)
[4,?x/B,2y/C]

*+ Father(B,C), Ans(A)

= <fail>
6,034 - Saring 03 » 20 q
Side11.1.21
The last choice we made that has a pending aternative is when we matched Parent(B,C) to the Example
consequent of rule 4. If we instead match the consequent of rule 5, we get an aternative literal to Father (A,B) i ground fact
Mother (B,C) ¢ ground fact

try, namely Mother(B,C).

GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,?y)
Parent (?x,?y) : - Mothex(?x,7%y)

o

* Prove:
GrandP(?g,C), Ans(?g)

[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]

+ Parent(?g,,?y,), Parent(?y,,C), Ans(?qg,)
[4.7x/7a,,2¥/?¥,; ?¥,=7?¥,,7G,7q,]

* Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
(1,7g,/A,7y,/B]

+ Parent(B,C), Ans(A)
[4,?x/B,2y/C]

*+ Father(B,C), Ans(A)

« <fail>
[5,?x/B,?y/C]

* Mother(B,C), Ans(A)

6,034 - Spring 63 » 21 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,?y)
Parent (?x,?y) : - Mothex(?x,7%y)

L

Prove:
GrandP(?g,C), Ans(?g)
[3,?x/?g,72/C; 2y=>?y,,.?g=>7q,]
Parent(?qg,,?y,), Parent(?y,,C), Ans(?g,)
[4,7x/79,.7¥/7Y¥,: ?¥,=7¥,,7G,=7g,]
Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
(1,7g,/A,7y,/B]
+ Parent(B,C), Ans(A)
[4,?x/B,2y/C]
Father(B,C), Ans(A)
<fail>
[5,?x/B,?y/C]
Mother(B,C), Ans(A)
[21
Ans (A)

6,034 - Spving 03 » 22 q

Slide11.1.23

Another way to look at the process we have just gone through is as aform of tree search. In this
search space, the states are the entries in the stack, that is, the literals that appear on our stack. The
edges (shown with agreen dot in the middle of each edge) are the rules or facts. However, thereis
one complication: arule with multiple antecedents generates multiple children, each of which must
be solved. Thisisindicated by the arc connecting the two descendants of rule 3 near the top of the

tree.

Thistype of treeis called an AND-OR tree. The OR nodes come from the choice of arule or fact to
match to agoal. The AND nodes come from the multiple antecedents of arule (all of which must be

proved).

Y ou should remember that such atree isimplicit in the rules and factsin our database, once we
have been given agoal to prove. Thetreeisnot constructed explicitly; it is just away of visualizing

the search process.

Let's go through our previous proof in this representation, which makes the choices we've made

more explicit. We start with the GrandP goal at the top of the tree.

1
2.
Proof Tree - Vi BiTE, ML PUPY. PE)
4. i= F(™n,?y)
SR . 1~ MiTu. oY)
= o Sairg.cl, Anatrg)
— . L e PITYLE) . Ane(Tg,)
‘/ T - Fia.tel. POvncl. Ansian
- P8, Ans (A)
- F(8,C). Ans(A]
<fail>
Pirg. piry.€) e
A@\
Fita.tyl MiTa) riy.c) niry.c)
/ S \. S5
%\ /&‘\o (m V\T\N‘o
\ \ \
FiA.B] HiB.C) FiA.B) HiB.C)
so-speger
Slide11.1.25

We match the Parent subgoal to the rule 4 and generate a Father subgoal.

our original question.

Slide11.1.22
Example This matches fact 2. At this point there are no antecedents to add to the stack and the Ansliteral is
Father (A,B) i ground fact on the top of the stack. Note that the binding of the variable ?g to A isin fact the correct answer to
Mother (B,C) ¢ ground fact

Proof Tree

P (7.}

— —
Pitg. M) PiTy.C)
A@\
Fivrg. ™y} Mg, Ty) FITy.C)
%\ PEANSN
\ *;
FiA.®) HiB.C) Fia.®)

el

= PiTE Ty Py,)
Fit, Tyl

1= M(*x, %y}

Prove.

OF [g.C], Anui?g)
Pi7g. 7w, PI7Y.C1. AneiTg)
FiTa. %0, PITy,Cl, AneiTg)
PIB.C). AnsiN)

F(8,C). Anmin)

<fail>
M(B,Cl .
Ans (A}

Ans (]

MITy.C)

Sy

s, c)

6,034 - Spring 63 » 23

4

Slide11.1.24

We match that goal to the consequent of rule 3 and we create two subgoals for each of the
antecedents (after carrying out the substitutions from the unification). We will look at the first one

(the one on the left) next.

Proof Tree

Pitg. My} PiTy.C)
Fivrg. ™y} Mirg.Ty) FTy.C)
7
\ *; \
FiA.B] HiB.C) FiA.B)

waLNe

te pite)P0y TE)

PiT - FIPm. Py
POTH, Py - MITHPY)

Prove.
P [7g.C], Ansi?g)

. AneiTg,)
+ Anm(Ta)

FI8,C). Anmin)
<fail>
M(B,C) . Ansin)
Ans (A}

MITy.C)

Sy

s, c)

6,034 - Spring 03« 25

4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

1. Slide 11.1.26
Proof Tree 1im BiTm oyl iYL TE) Which we match to fact 1 and create bindings for the variablesin the goal. In all our previous steps
4. ., i= F(™n,?y) . . " . . . " .
D 5. POy MR TY) we also created variable bindings but they were variable to variable bindings. Here, we finally
‘@‘ @, A match some variables to constants.
4 L 1 W PITYLC), Ane(Tg)
* 2. w1 PITY.Cl, Ane(?g,)
- PIB.C). Ans(A]
. F(8,C). AnsiA]
D e, aaw
Pirg.) piry.cl + Anminy
FiA.B] HiB.C) FiA.B) HiB.C)
6,034 - Saring 03« 26 4
Slide11.1.27 Lo e
We have to apply this unifier to all the pending goals, including the pending Parent subgoal from Proof Tree - et (Rl B
rule 3. Thisisthe part that's easy to forget when using this tree representation. o limi 5. PO Y1 MK, TY)
@‘) g?w,:]. Anairgl
» PLTg. "0, PI7y.Cl, Anm(7g)
* Fi?g:. "yl PI?y,.Cl, Anm(Tg,)
- FIB.C). Ans(A]
. F(8,C). Ans(A]
D e, aaw
Pirg. Tyl pa. + Ans{ny
g
4
4
5ok
g
4
Fira. vl ;m’ya FIy.Cl MiTy.C)
'// \.
/'/;
FiA.B] HiB.C) FiA.B) HiB.C)
6,034 - Saring 03 » 27 4
3o o Slide 11.1.28
Proof Tree : =i sonmisonrn Now, we tackle the second Parent subgoal ...
SR 5. POyl MK TY)
‘@‘ I 5;7:3 i o
» LAl Wl PITYLC), Ane(Tg)
* I'I‘U 2P¥el. PITYLCl. Ane(Tg)
- PIB.C) . Ans(A]
- F(B.C). AnsiA)
- <rmits
LIE R (TN ﬁ:;:: ——
FiA.B] HiB.C) FiA.B) HiB.C)
6,034 - Saring 03« 28 4
Slide 11.1.29 »
... which proceeds as before to match rule 4 and generate a Father subgoal, Father(B,C) in Proof Tree ;' =c.. etk LA
this case. SR 5. POyl MK TY)
‘@‘ T
. « P(Ty,.C), Anm(Tg,)
. (3 « PPy Cl, Anm(Tg)
* pa, CI M-IM
. F(8,C). Ans(A]
<fail>
M(B.C),. AnsiA]
Fitg. Tyl M?
FiA.B] HiB.C) FiA.B) HiB.C)

ralh, Tyin

6,034 - Spving 03 « 29 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

1 Slide 11.1.30
Proof Tree : =i sonmisonrn But, as we saw before that leads to a failure when we try to match the database.
SR 5. POR.yI- HETEL Ty
Chirg.cl, Ansirgl
gyt Bvec) Anaran
P(B.C). Ans(A]
F(8,C), AnsiA)
Ll H:;lél- Ans (A]
L B L M,
Fi?e. %) MiTg.Ty) FI8,C) M(Ty.C)
/&% o X\Xo\“ﬁa
FiA.B] H{a‘,c! FiA.®) HI!I-CI
6,834 - Sgving 03 » 30 q
Slide11.1.31 3w
So, instead, we look at the other alternative, matching the second Parent subgoal to rule 5, and Proof Tree 3 ::;-,;;:_: rirem oyt
generate aMother (B, C) subgoal. SR 5. ROyl MU TY)
’ ;;?;:.EJ. Ansi?g]
L Reara. piecl. ametran
. P(B.C). Ans(A]
. F(8,C), AnsiA)
* H:;I-IT;- Ans (A]
/m\. (I\.V\T.\m
FiA.B] H{a‘,c! FiA.®) HI!I-CI
6,634 - Sgving 03 » 31 q
L Slide 11.1.32
Proof Tree : =i-:: This matches the second fact in the database and we succeed with our proof since we have no
o limi 5. Pom - pending subgoals to prove.
;;?;‘.ﬂ]. Ansi?g)
:3:;.::',:1 2 (rriccy un i) This view of the proof process highlights the search connection and is a useful mental model,
e L athough it istoo awkward for any big problem.
* ;:;I-IT;- Ans (A]
L B L Mw
Fi?q. %y} Mg, Ty) F8,C) H(B,.C)
/&% o %o
FiA.B] H{a‘,c! FiA.®) MiB.C)
6,634 - Sgving 63 » 32 q
Slide 11.1.33 i &
At the beginning of this section, we indicated as one of the advantages of alogical representation Relations not Functions

that we could define the relationship between parents and grandparents without having to give an 1. Father(A,B); ground fact
i P ifi F i 0 ; e : 2. Mother(B,C); ground fact
algorithm that mlght be specmc_to finding grandparents of grandchildren or vice versa. Thisis still S GadPtRL TTis Taveck (eeTer R TR
(partly) true for logic programming. We have just seen how we could use the facts and rules shown 4. Parent(?x,?y) :- Father(?x,?y)
here to find a grandparent of someone. Can we go the other way? The answer isyes. 5. Parent(?x,?y) :- Mothex(?x,?y)
P . . . + B H
Theinitial goal we have shown here asks for the grandchild of A, which we know isC. Let's see Grande (A,7£), Ans(?£)

how we find this answer.

6,034 - Spving 03 » 33 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Relations not Functions

1. Father(A,B); ground fact

2. Mother(B,C); ground fact

3. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y) :- Father(?x,?7y)

5. Parent(?x,?y) :- Mother(?x,?y)

* Prove:

GrandP(A,?£), Ans(?f)
[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]
*+ Parent(A,?y,), Parent(?y,,?f,), Ans(?f,)

6,034 - Spring 03 » 34

4

Slide11.1.35

Once again, we match the Parent subgoal to rule 4 and get a new Father subgoal, thistime

involving A. We are basically looking for achild of A.

Relations not Functions

1. Father(A,B); ground fact

2. Mother(B,C); ground fact

3. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y) :- Father(?x,?7y)

5. Parent(?x,?y) :- Mother(?x,?y)

* Prove:

GrandP(A,?£), Ans(?f)
[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]
*+ Parent(A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,: 2¥,=7Y,,?2f,=7£,]
» Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
[1,7y,/B; 7£,=7£,]
+ Parent(B,?f)), Ans(?f,)

6,034 - Spring 03 » 36

4

Slide 11.1.37

We match the Parent subgoal to rule 4 and generate another Father subgoal, which fails. So, we

backup to find an alternative.

Slide11.1.34

Once again, we match the GrandP goal to rule 3, but now the variable bindings are different. We
have a constant binding in the first Parent subgoal rather than in the second.

o

Relations not Functions
Father (A,B) ; ground fact
Mother(B,C); ground fact
GrandP (?x,?z) :- Parent (?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,?y)
Parent (?x,?y) : - Mothex(?x,7%y)

Prove:
GrandP(A,?£), Ans(?f)
[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]
Parent (A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,: 2¥,=7Y,,?2f,=7£,]
Father(A,?y,), Parent(?y,,?f,), Ans(?f,)

6,034 - Spring 63 » 35 q

Slide11.1.36

Then, we match the first fact, namely Father (A, B), which causes us to bind the ?x variable in
the second Parent subgoal to B. So, now, we look for a child of B.

o

Relations not Functions
Father (A,B) ; ground fact
Mother(B,C); ground fact
GrandP (?x,?z) :- Parent (?x,?y) ,Parent(?y,?z)
Parent(?x,?y) : - Father(?x,7y)
Parent (?x,?y) : - Mothex(?x,7%y)

Prove:
GrandP(A,?£), Ans(?f)
[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]
Parent (A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,7x/A,?¥/7y,;: ?¥,=»?¥,,7£,=7£,]
Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
[1,?y./B; 2£,=7£,]
Parent(B,?£f.), Ans(?f,)
(4,2x/B,?y/?7£,; 7£,=57£,]
Father(B,?£,), Ans(7f,)
<fail>

6,034 - Spring 63 » 37 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.1.38
Relations not Functions

Father (A,B) ; ground fact

Mother(B,C); ground fact

GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y) : - Father(?x,7y)

Parent (?x,?y) : - Mothex(?x,7%y)

L

v Prove:
GrandP (A,7£), Ans(?f)

[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]

*+ Parent(A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,: 2¥,=7Y,,?2f,=7£,]

* Father(A,6?y,), Parent(?y,,?£f,), Ans(?f,)
[1,?y,/B; 7£,=7£,]

+ Parent(B,?f)), Ans(?f;)
[4,2x/B,?y/?£,: 7£,=57£,]

*+ Father(B,?f,), Ans(7f,)

+ <fail>
[5,?x/B,2y/?7£,; 7£,=27£,]

+ Mother(B,?f,), Ans(?f,)

6,034 - Spving 63« 38 q

Slide 11.1.39
...which succeeds and binds ?f (our query variable) to C, as expected.

Note that if we had multiple grandchildren of A in the database, we could generate them all by
continuing the search at any pending subgoals that had multiple potential matches.

The bottom line is that we are representing r elations among the elements of our domain (recall
that's what alogical predicate denotes) rather than computing functions that specify a single output
for agiven set of inputs.

Another way of looking at it is that we do not have a pre-conceived notion of which variables
represent "input variables' and which are "output variables'.

Slide 11.1.40

We now match the second Parent subgoa to rule 5 and generate aMother (B, ?f) subgoal.

o

Relations not Functions

Father (A,B) ; ground fact

. Mother(B,C); ground fact
. GrandP(?x,?z):- Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y) :- Father(?x,?y)
Parent (?x,?y) : - Mothex(?x,7%y)

Prove:
GrandP (A,7£), Ans(?f)
[3,?x/A,22/7£; 2y=>7y,,PE8=37E,]
Parent (A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,: 2¥,=7Y,,?2f,=7£,]
Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
[1,?y,/B; 7£,=7£,]
Parent(B,?£f.), Ans(?f,)
[4,7x/B,?y/?7£,;: 7£,=37£,]
Father(B,?£,), Ans(7f,)
<fail>
[5,?x/B,2y/?7£,; 7£,=27£,]
Mother(B,?£,), Ans(?f,)
[2,7£,/C)
Ans (C)

6,034 - Spring 63 » 39

4

Order Revisited

* Given

parent (A,B)
parent(B,C)
ancestor (x,?z)
ancestor(?x,7z)
Prove:
ancestor(?x,C), Ans(?x])

:= parent(?x,7z)
:- parent(?x,7y) ., ancestor(?y,?z)

f ke

% Ans (A)

6,034 - Spring 03 » 40

Slide11.1.41

Here we've switched the order of rules 3 and 4 and furthermore switched the order of theliteralsin
the recursive ancestor rule. The effect of these changes, which have no logical import, is disastrous:

basically it generates an infinite loop.

We have seen in our examples thus far that we explore the underlying search space in order. This
approach has consequences. For example, consider the following simple rules for defining an
ancestor relation. It says that a parent is an ancestor (thisis the base case) and that the ancestor of a
parent is an ancestor (the recursive case). Y ou could use this definition to list a person's ancestors or,
aswe did for grandparent, to list a person's descendants.

But what would happen if we changed the order alittle bit?

Order Revisited

* Given

. parent(A,B)
parent(B,C)
ancestor (x,?z)
ancestor(?x,7z)
Prove:
ancestor(?x,C), Ans(?x])

:= parent(?x,7z)
:- parent(?x,7y) ., ancestor(?y,?z)

f ke

. h‘nl(N
* How about:
1. parent(A, B}

2. parent(B,C)

3. ancestor(?x,?z) :- ancestor(?y,?z), parent(?x,?y)
4. ancestor(?x,?z) :- parent(?x,7z)

+ Prove:

ancestor(?x,C), Ans(?x)

. <error: stack overflow>

6.034 - Spring 03 » 41 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 11.1.42
Order Revisited This type of behavior iswhat you would expect from a recursive program if you put the recursive
. Given case before the base case. The key point is that logic programming is half way between traditional
1. parent(a,B) programming and logic and exactly like neither one.
2. parent(Bs,C)
3. ancestor(?x,?z) :- parent(?x,?z)
4. ancestor(?x,7z) :- parent(?x,7y). ancestor(?y,?z)
Prove:
ancestor(?x,C), Ans(?x)
. Ml (&)
* How about:
1. parent(A,B)
2. parent(B,C)
3, (2x,72) - (?y,?2), parent(?x,?y)
4. ancestor(?x,?z) :- parent(?x,7z)
Prove:
ancestor(?x,C), Ans(?x)
d :e:mr: stack overflow>
« Clauses examined top to bottom and literals left to right.
This is not logic!
5034 - Saving 63 » 42 4
Slide 11.1.43
It is often the case that we want to have a condition on arule that says that something is not true. Negation

However, that has two problems, one isthat the resulting rule would not be Horn. Furthermore, as

we saw earlier, we have no way of concluding anegative literal. In logic programming one typically * We cannot have a rule such as

makes a closed wor [d assumption, sometimes jokingly referred to as the "closed mind" assumption, *PiA-P,—Q .
which says that we know everything to be known about our domain. And, if we don't know it (or + =P, VP, vQ -notHorn (two pos literals)
can't proveit), then it must be false. We al know people like this... « Cannot have rule that concludes a negation

«In logic programming, we assume we have
complete information about the world (closed-world
assumption)

6,034 - Spring 03 » 43 4

Slide11.1.44
Negation Given we assume we know everything relevant, we can simulate negation by failure to prove. This
isvery dangerousin general situations where you may not know everything (for example, it'snot a

* We cannot have a rule such as good thing to assume n exams)...

*PLA-P,2Q
== P, vP,vQ - not Horn (two pos literals)
« Cannot have rule that concludes a negation
«In logic programming, we assume we have
complete information about the world (closed-world
assumption)
* We use “failure to prove” as negation - a
dangerous assumption.

* Prove: ; in empty KB
not P(?x), Ans(?x)
* Ans (?x) ; success
6,034 - Spring 03« 44 4

Slide 11.1.45 %
... but very useful in practice. For example, we can write rules of the form "if there are no other Negation
acceptable flights, accept along layover" and we establish this by looking over all the known o . ,
fligﬁt]s ghis, accept along &y v 100King « But often very useful in finite domains, e.g. flights

database, products of a company, etc.

* For example:
Layover not too long(?fl, ?£f2) :-
Arrival_time(?f1, ?tl),
Departure time(?f2, ?t2),
not Alternative connectien(?fl, ?tl, 2?£2, ?t2)
» Will succeed if the Alternative_connection literal
fails.

6.034 - Spring 03 » 45 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 11.2

Slide11.2.1

So far, what we have seen of logic programming may not seem much like programming. Now, we
will look at a number of list processing examples that will look more like the examples that you
are used to writing in Scheme.

What we will seeisessentially a subset of the logic programming language Prolog, which is used
fairly widely. There are anumber of open-source and commercia versions of Prolog available. We
will use avery simple home-brew system implemented in Scheme rather that one of these systems
so that there are no mysteries in the implementation. However, we will pay a substantial
performance penalty for this choice.

Logic Programming

* So far, not much like programming
* But, this framework can be used as the basis of a
general purpose programming language
* Prolog is the most widely used logic programming
language
* For example:
« Gnu Prolog http://www.gnu.org/software/prolog/prolog.htm|
« SWI Pr0|09 http://www.swi-prolog.org/
« SICStus Fl’O]Og http://www sics,.se/sicstus/
« Visual PI’O|Og http: ffwww.visual-prolog.com/

6.034 - Spring 03« 1 \Q

Slide11.2.2
List Processing: length

(define (length vy)
(if (null? y)
o
{+ 1 (length (cdr ¥)))))

6.034 - Spring 03« 2 q

Slide11.2.3

Thiswould be a Prolog-like solution to the same problem. It has essentially the same structure as the
Scheme program. We use a predicate "length” that has two arguments, one is the list and the other
itslength.

Thefirst "fact" handles the base case; it defines the length of the null list as 0.

The second rule handles the recursive case. The consequent of the rule (the left-hand-side) is what
will match a pending subgoal. Note the form of the first argument of the consequent: it is a Scheme
dotted pair. It is set up to match the variable ?h to the car of alist and the variable ?x to the cdr of
thelist. The second argument of the consequent expresses the length of the list as afunction of the
length of the cdr of the list.

Theright hand side of the ruleisthe IF part. It sets up asimpler subgoal to solve. Once we solveit,
we will have bound ? to the length of the cdr and we will know the length of the full list (including
the car).

Let'slook at an example.

Let's start with avery simple Scheme program to compute the length of alist. It's composed of two
"cases’, the base case when the list is null and the recursive case, in which we reduce the problem
into asimpler instance of the same problem (getting the length of the cdr of the list) and compute
thefina result by adding one to the result of the recursive call.

List Processing: length

(define (length y)
(if (null? v)
[}

{+ 1 (length (cdr y)))
)

* length((),0)
* length((?h . ?x), ?1+1) :- length(?x,?l)
Recall “dotted pair” notation (x . y) means x is car of
list and y is cdr of list. (cons x y) returns (x . y).
In general something like (a b . x) indicates that x
is rest of list.
(a.()=(a)
(ab.(cd)=(abcd)

6034 - Spring 033 ‘q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.2.4
List Processing: length Y ou can see the operation of this little program here. The operation is very like that of the

1. length(0),0) corresponding Scheme program. The sequence of subgoals corresponds to the recursive calls to the

2. length((?h . ?x), ?1+1):- length(?x,?1) program.
Brovas: We have separated the unifier substitution step from the renaming to make things alittle clearer.
length((a b),?a) ,Ans(?a) Note that without the renaming we would be hopelessly confused with the bindings of 2.

[2,?h/a,?x/ (b) ,?a/?1+1]

a. length((a b),?1) ,Ans(?1+1) In practice, in a Prolog system, the arithmetic expressions would be evaluated by the system and we

[rename,1=$71,] would get Ans(2).
b. length((b),?1,) ,Ans (?1,+1)

[2,?h/b,?x/ () ,?1,/?1+1]

c. length((b) ,?1) ,Ans (?1+1+1)
[renama , ?1=+71,]

d. length((),?1,), Ans(?1,+1+1)
[1,71,/0]

e. Ans (0+1+1)

6.034 - Spring 03 = 4 4

Side11.25
Thisis the same operation but combining the unfier substitution and renaming steps. Y ou can see List Processing: length

the sequence of subgoals more clearly here. 1. length((),0)

2. length((?h . ?x), ?l+1):- length(?x,?1)

Prove:
length((a b),?a) ,Ans(?a)
[2,?h/a,?x/(b) ,?a/?1+1;
?1=$71,]
a. length((b),?1,) ,Ans(?1,+1)
[2,?h/b,?x/ () ,?21,/21+1;
?1=71,]
b. length((),?1,), Ans(?L,+1+1)
[1,21,/0]
c. Ans(0+1+1)

6034 - Sprisg 03 § 4

Slide 11.2.6
List Processing: length? Y ou may be wondering whether this formulation of length would also work. Certainly, it seemsjust
as valid as the one we used. Let's trace it through. We start with the same goal as before, finding the

o Lengen(l) :9) length of the list (ab).

2. length(?x,?1-1):- length((?h . ?x),?71)

Prove:
length((a b),?a) Ans(?a)

6034 - Spring 03+ 6 4

Slide11.2.7
We match the goal to the consequent of rule 2 and do the substitution to get anew subgoal. Note, List Processing: length?
however, that thisis not asimpler subgoal. It's actually trying to find the length of alonger, not
completely specified, list. If we knew the length of such alist then we could know the length of our
input list. Can you smell trouble brewing?

1. length((),0)
2. length(?x,?1-1):- length((?h . ?x),?71)

Prove:
length((a b),?a) Ans(?a)
[2,?x/(a b),?a/?1-1]
+ length((?h . (a b)),?l),Ans(?1-1)

6.034 - Spring 03« 7 4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 11.2.8
List Processing: length? Sure enough; we've coded an infinite loop. The moral of the story is that you want to write these
recursive rulesin the form of "complex consequent :- simple antecedent”" and not the other way
1. length((),0) around
2. length(?x,?1-1):- length((?h . ?x),?71))
Prove:
length((a b),?a) Ans(?a)
[2,?x/(a b),?a/?1-1]
+ length((?h . (a b)),?1),Ans(?1-1)
[rename, 1=+?1,, ?h=+?h,]
+ length((?h, a b),?1,) ,Ans (?1,-1)
[2,?x/(?h, a b),?1,/71-1]
*« length((?h . (?h; a b)),?l) ,Ans(?1-1-1)
[rename,?1=»?1,, ?h=>7h,, ?h,=>?h,]
+ length((?h, ?h, a b),?1,), Ans(?1,-1-1)
+ etc
£.034 - Spring 03« 8 4
Slide11.2.9 : i
Here's another formulation of length that does work. Here we've separated the updating of the length List Processing: length
into a separate equality statement. The software that we will be using will require this particular
form qually g eq P * Another equivalent formulation
’ * length((),0)
* length((?h . ?x),?1l) :- length(?x,?lw),?1=?1lw+l
6.034 - Spring 03« 8 4
2 _ Slide 11.2.10
List Processing: append Let'slook at another example, which is quite parallel to length. Here is a Scheme implementation of

an append function. It too consists of two cases. The base case handles the case of the first argument
being null, in which case the answer is simply the second list. The recursive case involves
computing the solution to asimpler case (append of the cdr of x to y) and updating it to the final
answer by consing the car of x to the resullt.

(define (append x y)
(if (null? x)
Y
(cons (car x) (append (cdr x) ¥y))
))

6.034 - Spving 03 » 10 4

Slide11.2.11

The logic program is completely analogous. The append predicate has three arguments, the lists to List Processing: append
be appended and the result list. Thefirst fact just says that the output of appending the null list and {datine fappenidiocy)

any list isjust the second list. The second rule looks more complicated but it isjust like the Scheme (if (null? x)

program. We pick out the car and the cdr in the consequent (note the use of dotted pair notation) and v

bind them to ?h and ?x respectively. Then we define a subgoal involving ?x and ?y and bind the (cons (car x) (append (cdr x) y))
result to ?z. We can then construct the result for the original list by consing 7h to ?z (using dotted |}

pair notation).
+ append((),?y,?y)
« append((?h . ?x),?y,(?h . ?z)) :- append(?x,?y,?z)

Recall “dotted pair” notation (x . y) means x is car of
list and y is cdr of list. (cons x y) returns (x . y).
In general something like (a b . x) indicates that x
is rest of list.
(a.0)=(a)
(ab.(cd))=(abcd)

6,034 - Spving 63 » 11 4

List Processing: append
1. append((),?y,?y)

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 11.2.12
Here you can trace the operation of these rulesin avery simple example. Once again note that the
renaming is crucia for keeping things straight.

2. append((?h . ?x),?y,(?h . ?z)):- append(?x,?y,6?z)

Prove:
append((a b), (c d),?1),Ans(?1)

[2,?h/a,?x/(b) ,?y/(c d) ,?1/(a . ?z); ?z=72Z,]

a. append((b), (c d),?=z,) ,Ans((a . ?z,))
[2,?h/b,?x/ () ,?y/ (e d),?z,/(b . ?z); 2z=>22Z,]
b. append((),(c d),?2,), Ans({a . (b . ?2,)))

[1,?y/?2;,72;/ (e d)]
c. Ans((a . (b . (e d))))

Note that (a . (b . (cd))) is (a b c d)

6.034 - Spving 83 » 12 q

Slide 11.2.13

Thus far, the structure of the logic programs we have seen is very similar to that of the natural
Scheme programs. But that's not always the case. Let's look at an alternative way of representing
lists that leads to very different looking programs. The representation is called differencelists. You
can see some examples of this representation of asimple list with three elements here. The most
important oneis diff((ab c. ?x), ?x), which saysthat any list starting with (a b c) and followed by
anything can be used to represent the list.

Slide 11.2.14
Difference Lists

* A list can be represented as the difference between
two lists, which we will write aife(L1,12)
* For example, (a b c) can be written as
+diff((abe), ()
= diff((ab c d), (d))
+diff((abede), (de))
s diff((ab e . ?x), ?x)
* The empty list is any list of the form
« diff (?x, ?x)
o In diff(L1,L2) think of 11 as a pointer to the
beginning of the list and 12 as a pointer to the end
of the list.

s - spmgerels g

Slide11.2.15

In this representation we can code append as a single fact! The picture shows the intuition behind
the definition. On first viewing this seems like we're cheating. It's easy to see that this statement is
true, but how does it actually compute anything? Partly, one has to think carefully about the
representation of the input.

Difference Lists

* A list can be represented as the difference between
two lists, which we will write aife(L1,12)
* For example, (a b c) can be written as
+diff((abe), ()
» diff{ (ab e d), (d))
s diff((abecde), (de))
« diff{ (abe . ?x), ?x)
* The empty list is any list of the form
» diff (?x, ?x%)

6,034 - Spving 63 » 13 q

The basic ideais that we can represent alist by apair of pointersinto abigger list, one to the
beginning and the other to the end of thelist.

List Processing: dappend

1. dappend (diff (?x,?y) ,diff (?y,?z) ,diff(?x,?z))
-

= L - .)
T =)
)i [
1
l B iz
1 t t
x k3% 7z

?x= (1234567891011 12 13)
Py = (67895 10 11 12 13)
7z = (12 13)

6.034 - Spring 63 » 15 q

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide11.2.16
List Processing: dappend

1. dappend (diff (?x,?y) ,diff (?y,?z) ,diff(?x,?z))

* Prova:

dappend(diff((a b . ?p),?p),.diff((c d . ?q),?q),?w)

6.034 - Spring 83 » 16 q

Side 11.2.17

Now, we unify. Note that unification ends up equating ?y, the end of thefirst list in the rule, with ?p,
the end of thefirst input list. Then ?p (and therefore ?y) is matched to the start of the second list.
Thisisbasically what carries out the append operation.

Yes, it looks like magic. We will be using difference listsafair bit when we do natural language
processing, so it is worth spending abit of time understanding them.

Slide11.2.18

Here we see how a goa would be phrased in this representation. We have used the most general
representation of the input lists.

List Processing: dappend

. dappend (diff (?x,?y) ,diff (?y,?z) ,diff(?x,%2))

Provae:
dappend(diff((a b . ?p),?p),diff((c d .
[?x/(a b . ?p),
?y/?p,
?p/{e d . ?q),
?z/?q,
?w/diff((ab . (e d . ?q)), ?q)1]
Nota that diff({ab . (ed . ?q)), ?q) is
equivalent to diff((abed . ?q), ?q) — which
is correct.

?q) ,?q) ,?W)

6,034 - Spring 63 » 17 q

List Processing: reverse

(define (reverse 1)
(define (reversel x y)
(if (null? x)
¥
(reversel (cdr x) (cons (car x) y))))

(reversel 1 '()))

Let'slook at another example, first without difference lists and then with.

Thisis Scheme for alist reverse operation. It's a bit more complicated than the cases we've seen so
far. To reverse the list, we need atemporary value to serve as an accumulator for the reversed list.

That's what the y argument to the inner procedure is. y starts with the null list and we cons each of

the elements of the input onto thislist. When the first argument is null, we return the accumul ated

list.

6,034 - Spring 63 » 18 q

Slide11.2.19

We follow the same pattern in the logic program. We define the predicate reverse, with two
arguments, the input and output lists, in terms of a three-place auxiliary predicate reversel, which
introduces the accumulator and initializes it to nil. Note that if you reverse the first argument of
reversel and append it to the second argument of reversel then that gives the answer to the original

query.

Reversel is defined by two rules: in the base case when the first argument is nil, we simply equate
the output list to the accumulator. In the general case, we set up arecursive subgoal with the cdr of
thelist, but we cons the car of theinput list to the accumulator.

List Processing: reverse

(define (reverse 1)
(define (reversel x y)
(if (null? x)
¥
(reversel (cdr x) (cons (car x) y))))

(reversel 1 '()))

+ reverse(?l, ?Prev) :- reversel(?l, (), Trev)
+ reversel((), ?y, ?¥)

?r), Py, ?z) :-

?y), ?z)

* reversel((?h .
reversel(?r, (?h .

6,034 - Spring 63 » 19

4

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

List Processing: reverse

1. reverse(?l, ?rev) :- reversel(?l, (),

. reversel((), %y, ?v¥)

3. reversel((?h . ?r), ?y, ?z) :-
reversel(?r, (?h . ?vy), ?z)

h

* Prove:
reverse((a b), ?v), Ans(?v)

[1,?1/{a b),?rev/?v]

a. reversel((a b), (), ?v), Ans(?v)
[3,?h/a,?c/ (b) ,2y/ () ,?2/?v]

b. reversel((b), (a . ()), ?=z), Ans(?v)
[3,?h/b,?c/ () ,?y/ (a) ,?2/?V]

ec. reversel((), (b . (a)), ?v), Ans(?v)
[2,?v/?y,?y/ (b a)]

d. Ans((b a))

?rev)

6,034 - Spring 03 » 20

Slide11.2.21

Here is the implementation using a difference list instead of an explicit accumulator. Note that the
end of the difference list essentially behaves as the accumulator variable did in the previous

implementation.

Hopefully, this has given you some flavor for logic programming. We will see more examples of

these types of rulesin the next chapter.

Slide 11.2.20
Y ou can see the operation on asimple example here.

2. dreversel((), diff(?y, ?y))
3. dreversel{ (?h .

List Processing: dreverse

?r), diff(?ys, ?ve))
dreversel (?r, diff(?ys, (?h .

1. dreverse(?l, ?rev) :- dreversel (?1, diff (Prev,()))

6,034 - Spring 63 » 21 4

